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1 Introduction

1 Introduction

Massive stars and their evolution are a highly discussed topic, relevant for many
astrophysical fields. Characterised by strong radiation and stellar winds, they
play a key role in the evolution of the interstellar medium. As a consequence of
the recombination approximately 400,000 years after the big bang, the universe
was opaque in a wide wavelength regime due to neutral hydrogen and helium.
Very massive stars may have contributed to the re-ionisation of these elements
some 100 Myr later, making it as transparent as it is today (Bromm, Kudritzki,
and Loeb 2001, Tumlinson, Shull, and Venkatesan 2002). In addition, they are
responsible for the enrichment with heavy elements. Elements up to iron are
produced in their cores by nuclear reactions, brought up by mixing processes, and
lost by their strong winds. Even heavier elements are produced and lost in the
energetic supernova explosions at the end of their lifetimes. Only these elements
allowed life on earth to come into existence. Finally, they can also trigger further
star formation in their stellar neighbourhood (e.g., Esquivel and Raga [2007).
After the comparatively short time with pressure due to burning processes as
a stabilizing agent, and the subsequent core collapse, only compact remnants
are left over. As up to approximately 70% of the massive stars are located in
binary systems (Sana et al. [2012)), they may still cause further energetic events.
In combination with a second, less evolved star, nova or supernova explosions can

occur.

Different observational methods can be used to characterise the different
evolutionary stages. As massive stars are very bright, their optical detection is
possible even in other galaxies in our Local Group neighbourhood. Spectroscopy
can reveal their surface properties and characteristics of their winds. Applying
astroseismology, an insight into their inner structure is possible (Aerts 2019).

Their supernova explosions are so bright, that a detection in very far galaxies

is possible. A new path for observations is gravitational wave analysis, which
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might be used for a detection in even further galaxies. If two compact remnants
are located closely together, they spiral inwards, merge together, and produce
energetic gravitational waves. Recent observations have been able to reveal
mergers of black holes (Abbott et al.[2016) and neutron stars (Abbott et al. 2017).

Finally, these compact remnants can lead to microlensing events, and thus
are relevant in corresponding observations (Wambsganss 2006, Riffeser et al.
2006)). For interpreting the number of observed events, reliable statistics of the
compact final remnants is essential. Constraints on the initial mass function can
be gained, when a trustworthy relation between initial and final masses is known.
Such a formalism, though based on simplifying assumptions, has been provided
by Renzini and Ciotti (1993). A more advanced description based on stellar
evolution models was found by Heger and Woosley (2002) and Woosley, Heger,
and Weaver (2002) for different metallicities.

Another path towards an improved understanding of massive stars, their
structure, and evolution is to utilize theoretical models.

However, the physics of massive stars is affected by a variety of complex
processes, which, until to date, are only partly understood. This includes internal
processes, such as the treatment of convection, rotational instabilities, and angular
momentum transport. Also the role of magnetic fields and the required precision
of adopted mass loss rates (Puls, Vink, and Najarro 2008) is still unclear.

In mathematical terms, several coupled, linear and non linear differential
equations have to be solved. Only a few estimates for typical variables have been
found, but no complete solutions.

There exists a multitude of different stellar evolution codes aimed at solving
structural processes and computing end states. As it is necessary to reduce
computational costs, different simplifications have to be adopted, the most salient
one being that the calculations are performed in one dimension.

For massive stars, the most commonly used stellar evolution codes are STERN
(Brott et al. 2011), GENEC (Ekstrom et al. |2012)), and MESA (Modules for
Experiments in Stellar Astrophysics). The latter has been developed by Paxton
et al. (2011}, 2013, 2015, [2018, [2019). It is mainly designed to calculate stellar
evolution for a wide range of masses, from very low up to very high mass stars, and
through all evolutionary stages, from the pre main-sequence up to white dwarfs or
to phases just before core collapse. However, it can also be used for a wide range

of other problems such as stellar pulsations or the evolution of (irradiated) gas
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planets.

A computation in three dimensions would require less approximations.
Nevertheless, this is very time consuming, and there are only few multi-
dimensional codes that only cover the short last phases or the explosion of stars
(Fields and Couch 2020, Chen, Heger, and Almgren 2013, Chatzopoulos and
Wheeler 2012). A currently used alternative is the 2d ESTER code (Gagnier
et al. 2019)[1-]. It is intrinsically designed as a stellar structure code, but can mimic
the evolution on the main sequence by consecutively increasing the central helium
content. The second dimension is advantageous for the treatment of effects such
as gravity darkening or rotation. However, turbulent motions still cannot be
treated correctly. Due to the limited ability of following the evolution with this

code, no study of the later phases is possible.

The aim of this thesis is to provide a relation for the end products in dependence
of initial mass and metallicity, based on state-of-the-art physical assumptions and
stellar models. As already described, such a relation can be utilized to interpret
microlensing observations.

One major aspect of this study is to evaluate the impact of the above mentioned
uncertainties, with respect to both evolution and progenitor structure. Following
this philosophy, we want to investigate the possible range of remnant properties.

While single stars potentially undergo interactions with companions at earlier
stages in their lives, the accompanying binary evolution entails even more
parameters and considerations. To this end, we will focus on the evolution of
single stars that evolve without any external influence and interaction. In the
parallel thesis of Ferraro (2020), a more detailed analysis of the earlier evolution
of binary stars on the main sequence (MS) is performed.

To obtain evolutionary paths and progenitor properties, we calculate stellar
evolution models using MESA, because of several reasons discussed in the
following.

As MESA is open sourcdz], and has a large number of contributors, there exists a
wide range of state-of-the art routines for numerics and physics. It provides a fully
coupled solution of the set of differential equations calculated by the module star.
Depending on the problem, different solvers are used, as described in Paxton et al.

(2011). These are mainly Runge-Kutta integrators for differential equations and

! Available online under http://ester-project.github.io/ester/
2Source-code online under http://mesa.sourceforge.net/
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a Newton-Raphson solver for finding roots. A variety of settings can be used to
adjust the numerical methods.

As for the numerics, also the assumptions about physics can be varied. Since
MESA is open source, we can deduce all assumptions made directly from the code.
Concluding, MESA is well suited for our study analysing the uncertainties.

We use MESA version 12115, together with the MESA software development
kit (SDK) version 20190830, and calculate the evolution of massive stars in
the range of 10...60M. with three different metallicities until central carbon
exhaustion. From this point, the timescales are short, and the remnant properties
can be concluded from the progenitor that has been calculated. We vary different

parameters, in order to study the resulting uncertainties.

1.1 Outline

In Chpt. 2| we start with a summary of the most important physical processes
within massive stars, the corresponding equations, and the uncertainties.

Subsequently, we present the main features of stellar evolution in Chpt. 3]
Together with the physical theory, we discuss the impact of specific physical
and numerical parameters in more detail. In addition, we compare the
calculations carried out with different stellar evolution codes with analogous MESA
calculations. Finally, the most important physical aspects of the explosions and
remnants are summarised. Especially, two formalisms are provided that can be
used to link the progenitor properties to the remnant.

In Chpt. [ we discuss our grid of models in more detail. We present the
relevant physical parameters chosen. The key technical aspects, such as runtime
and required memory to run MESA simulations are provided.

The results of these calculations are analysed in Chpts. [§]and [6} In the former,
we analyse the evolutionary tracks and core and final masses of the progenitor. The
impact of various parameters is studied. In the latter, we discuss the corresponding
remnant masses. We provide diagrams displaying the remnant and explosion type
in dependence of initial mass and metallicity. Finally, specific diagrams required
for the analysis of microlensing events are presented.

A summary of our main findings, and an outlook for possible future work are
given in Chpt. [7]

In Apps. [A] and [B] we describe some of the MESA routines, our settings, and

our analysis routines in more detail.
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2 Physics of Massive Single Stars

A star is a massive, self-luminous, gravitationally bound object of ionised gas that
emits radiation derived from internal fusion processes.

Already from this short description one can see that there are different processes
that need to be understood to describe stars. This includes gravity, fusion
processes, (magneto-)hydrodynamics, an equation of state as well as different
transport processes.

As many stars are not separated objects but are located closely together in
clusters or binary systems, even an interaction should be considered. However,
dealing with these systems is beyond the scope of this thesis. We will focus on the
physics and evolution of single stars. A more detailed discussion on binary stars
with MESA has been provided by, e.g., Ferraro (2020).

In the following we want to give a short overview about the different
physics required to describe stars. As argued in the previous chapter, different
simplifications need to be applied to keep the computational effort in a reasonable
range.

We start with a description of non-rotating stars. In a first order approximation,
non-rotating stars can be assumed to have spherical shape and symmetry. In
addition, we can assume that they are in a static situation. This is valid during
all their life except some rapid phases of expansion or some unstable phases where

dynamical terms have to be included.

2.1 Stellar Structure Equations

The most important physics can be condensed in five stellar structure equations.
All these equations can be written in two different ways, depending on the
independent variables chosen. In the Eulerian description, variables depend on

the radius r, whereas they depend on the mass coordinate m in the Lagrangian



Physics of Massive Single Stars 6

description. Conversion between these two forms can be obtained via

Om =4nr?por, (2.1)
0 gor| 0
am—aam+ah (22)

where p is the density and ¢ the time.

The two basic equations for any fluid are the equation of continuity and the
Navier-Stokes equation. A derivation of the equation of continuity can be found
in Landau and Lifshitz (1987)). It describes the mass conservation and can be

written as

% + V- (pv) =0 (2.3)

with velocity v.
However, stars change only on long timescales. We can assume that they are in
a static situation (see above). In combination with spherical symmetry, Eqn. (2.3))

reduces to

dr 1

dm dmrip

d
d—T = d7mr?p, (2.4a)

(2.4D)

The momentum equation for a fluid was first formulated by Euler (1757)[] The

general form is

v 1

—+@w-V)v=—--VP 2.5

Gt V)= =P (25)
where the fist term on the rhs is the acceleration due to the gradient of the pressure
P, and the second term g includes other accelerations, such as gravity. Again

neglecting time dependencies, we obtain the condition for hydrostatic equilibrium

oP __Gm (2.62) or __Gm
o 2P ' om  4mxr?’

(2.6b)
with gravitational constant G. The pressure P includes all individual contributions
such as gas and radiation pressure and also for instance neutrinos. For phases of

rapid changes deviations from hydrostatic equilibrium can be considered, including

LAn alternative including viscous terms is the Navier-Stokes equation. As these can be
neglected in stars, we only provide the simpler Euler equation.
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an additional term for the acceleration a

GP_ Gm a

om  4mr* 4mr?

op _ _Gm

or  r2

—a, (2.7a)

(2.7b)

In addition to the mass also the energy has to be conserved. Different processes
1 with a power produced per gram ¢; combine to the total power [ such that the

energy conservation requires

o, o
5 =Adnr p;ﬁi, (28&) a—m = ZQ. (28b)

%

There can be sources (e > 0) such as nuclear fusion reactions (¢,) as well as sinks
(e < 0) like neutrino losses (¢,). Gravitational work can act both as a source or
sink depending on the situation.

Finally, there are different possibilities how the energy is transported. One
alternative is that the energy is purely transported by photons. This is discussed
further by Kippenhahn, Weigert, and Weiss (2012). Writing the transport equation
as a diffusive process results in the flux

dacT? 8T
o dacT7OT (2.9)

where a is the radiation constant, ¢ the speed of light, T" the temperature and x
the local Rosseland mass absorption coefficient. The flux can also be written using

the local luminosity [ = 47r?F. We can thus solve for the temperature gradient

or 3 kp
or  16wacr2T3

oT B 3 K
om  64r2ac riT3

(2.10a) . (2.10b)

The transport via convection and the condition(s) for when it needs to be
considered will be discussed further in the next section. Anyhow, the temperature

distribution can be found in a similar way

oT T Gmp oT T Gm
— = ———-V, 2.11 — =——=—Vau, 2.11b
or Pz (2.11a) om P 4t ( )
where V4 = % is the adiabatic temperature gradient. Actually, this is only
ad

an approximation as we will explain in the next section.
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2.2 Convection

When boiling water in a water heater or on a hotplate, bubbles start to rise at
some point. This effect is known as convection. But under which conditions does
it occur?

Every part of the fluid undergoes small random displacements. As it immedi-
ately adjusts to the ambient pressure, the density changes. If the density of the
rising bubble is larger than that of the surrounding medium, it sinks back. This
situation is stable against convection. However, for a steeper ambient gradient,
the bubble can have a lower density and thus continues to rise even faster.

For a quantitative analysis we have to compare the temperature gradient

_(?lnT
-~ OlnP

(2.12)

of the ambient medium to that of the perturbed bubble V;,;. For chemically
homogeneous situations this condition can be described by the Schwarzschild

criterion
V <V (2.13)

for stability.
If the medium has an inherent composition gradient, this can have a stabilisingﬂ

effect. The condition for stability can be written as

V <V, =V + ?VM (2.14)

2For an ideal gas, Pgas ~ pT/p, such that § > 0, ¢ > 0, only from the equation of state
(EOS)! However, the total pressure includes radiation pressure, and a general EOS is more
complicated. Looking at the composition term, this is indeed stabilising as for stars in most
situations p, T, u and P decrease outwards, such that %VU >0
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which is known as the Ledoux criterion. 6 and ¢ are thermodynamic derivatives

and V, the composition gradient

B dlnp
§=— (GlnT)P’M (2.15)
B Olnp
o= (o). 19
dln
o () .

An alternative approach for deriving a stability criterion is by calculating the

Brunt-Vaiséla frequency N,
N? :% (Ve — V), (2.18)

the frequency of oscillations of a perturbed element being exposed to a
gravitational acceleration ¢. If this is imaginary, the situation is unstable against
convection. Vy is either V;,, (Schwarzschild) or Vi, = Vs + %Vﬂ (Ledoux).

Both, the Ledoux and the Schwarzschild criterion, are used in various codes
and calculations. In general we would prefer including the composition gradient.
However, as both criteria are just approximations, it is unclear, which is the
better description. The question could be answered only by full 3d hydrodynamic
simulations.

If the medium is optically thick, no radiative losses are present, and the
convection is called “efficient”. In this case, the internal gradient V,,; of the

bubble becomes the adiabatic one

Pj

va - a—
d CPpT

(2.19)

where Cp is the specific heat at constant pressure, as stated, e.g., in Maeder (2009).
The treatment of radiative losses will be discussed further in the next section.
In case efficient convection occurs, also the ambient gradient adjusts to the

adiabatic one, V — V4.

2.2.1 Mixing Length Theory

The mixing-length theory (MLT) was first formulated by Prandtl (1925). He

suggests a simplified method to calculate convective mixing and energy transport.
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A good summary of the assumptions is given by Mihalas (1978) and Salaris and
Cassisi (2017).

Each convective bubble moves a typical distance A before it releases its energy
excess. This distance is expressed in terms of the local pressure scale height Hp

as

A =QNMILT ]’Ip7 (220)
P
Hp =P fi—r . (2.21)

Typical values for oy are on the order O (1)E| The MLT-Parameter has a huge
impact on the evolution. In our calculations we use the calibrated value by Brott
et al. (2011) of 1.5.

The convective flux can be calculated from the average velocity v, and the

temperature excess AT

Fconv :CPHpUconv (222)
ng 1/2
:pCPT <3—2) (V — th)g/2 a%JLT' (223)

As the numerical factors (here 3271/2) depend on the shape of the convective
bubble, and specific averaging procedures applied in the calculation, they can be
different from derivation to derivation.

The process of convection can be reformulated as a diffusion equation with

diffusion coefficient

A
Dconv :g * Veonv (224)
:aMLTHP * Veonw (225>
3
A

As the timescale of convection 7 = is very short compared to the evolutionary

Veconw
timescales of the staif], convective mixing can be considered as instantaneous. The
standard description MESA uses was formulated by Bohm-Vitense (1958)F] We
choose a more recent alternative based on Mihalas (1978)) including radiative losses.

These are important in outer stellar layers where the convective bubbles are not

3Calibrations using observations and stellar evolution codes range from ayrr ~ 1...2.

4\~ 0.1Rg), Veony ~ 4-10% cm/s during the main sequence, such that 7., ~ 0.5 yr. This is
short compared to the main sequence lifetime 7psg =~ 10° yr

SMESA parameter MLT option = ‘ML1’
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optically thick[f] They loose some amount of their internal energy excess before

dissolving into the ambient medium. The efficiency of convection is given by

Etransport
S el i 2.26
K Elost ( )
K
__ 1reony 997
2](rad ( )

where the convective and radiative conductivity are

4
Kcom) :chp/UconvA (228>
dacT?
K,y = . 2.99
"= 3 (2.29)

The implementation of inefficient convection in MESA is described in Paxton et al.
(2013)).

2.2.2 Semiconvection

During the main sequence, only the core becomes enriched by the produced helium
such that the composition gradient V,, > 0. In this case, every Schwarzschild
stable region is also Ledoux stable. If a region is stable according to the Ledoux

criterion but unstable according to Schwarzschild

Vit <V < Vi + nglﬂ (230)

semiconvection occurs.

The process of semiconvection can be understood in the following way: An
upwards perturbed cell is denser (Ledoux stable) and sinks down again. In addition
it is hotter (Schwarzschild unstable) and thus cools down due to radiative losses. It
becomes denser and sinks down even further, oscillating around the initial position
with increasing amplitude. The corresponding mixing efficiency is determined by
the timescale of radiative cooling and less efficient than convection.

In MESA, semiconvection is implemented as a diffusive process as formulated
by Langer, Fricke, and Sugimoto (1983)) and Langer, El Eid, and Fricke (1985),

6Massive stars do not have a convective envelope on the main sequence. However, during
later evolutionary phases, such an envelope can be present.
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with diffusion coefficient

Krad . V — Vacl
6Cop V-V

Dsemi =0gem; * (231)
The coefficient avgep; is usually chosen as O (0.1 — 1)[] In the limit agem; = 0
semiconvection recovers the pure Ledoux case. For very high values aienn; > 0 we

retain the Schwarzschild case.

2.2.3 Thermohaline Mixing

In more evolved stars shell burning can lead to an increase of heavier elements in
outer regions and thus to a negative u gradient. Another situation where negative
i gradients can occur are accreting binaries where processed material is deposited
at the surface.

This p gradient has a stabilising effect in the Ledoux case. The situation can be

stable according to the Ledoux criterion but unstable according to Schwarzschild

Vit >V > Vi + %SVM (232)

Let us consider a downwards perturbed bubble. This should rise up again as
it has a lower density. However, it is hotter and can sink down while cooling.
The efficiency is again given by the cooling timescale. MESA uses the diffusion
coefficient from Kippenhahn, Ruschenplatt, and Thomas (1980)

3K, 2V
D ermo — ermo - ¢ £ .
th thermo™s 0N — Vg

(2.33)

2.2.4 Overshooting

A convective bubble does not stop immediately when reaching a stable region, but
it still has a finite velocity. This phenomenon is known as overshooting.

A simple implementation is the “step overshooting”, expanding the convective
region by a given fraction ay,., of a pressure scale height. In this region the same

diffusion coefficient as at the boundary of the convective zone is applied®|

"gemi = 0.1 from Higgins and Vink (2020) qsenm; = 1 for Brott et al. (2011)

8 As the diffusion coefficient Dy, — 0 at the boundary of the convective zone, we cannot
choose the coefficient at exactly this position. Instead, the value inside the convective zone,
offset by a small amount foHp, has to be chosen. fj is typically on the order of O (0.01). The
specific choice has no strong impact on the model.
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An alternative and probably more physical approach is to apply an exponential
decay of the diffusion coefficient Dy at the boundaryﬂ

2Ar
D =Djexp (— foverHP> . (2.34)

These two schemes give very similar results for f,ﬁf}i,’f’ = ql5fer) /10. However, for

rotational effects included, there can be deviations between these two schemes.
The values for fouer O Qouer have to be calibrated to match observations.

Depending on the mass range and the calibration method, different authors find

different values. In table we give a summary of some values.

Cover | fover | M; /Mg (usage) || author
0 < 1.25 Ekstrom et al. (2012)
0.05 1.25...1.5
0.1 1.7...120
0.1 20...60 Higgins and Vink (2020))
0.1...0.2 7...60 Martins and Palacios (2013)
0.0175...0.02 || 6.15...6.27 || Wu and Li (2019) N
0.01/0.03 9...40 Yoshida et al. (2019)
0/0.002#
0.15" 30 Li, Chen, and Chen (2019)
0.2 0.8...120 Schaller et al. (1992))
0.2" 0.016" 0.1...300 Choi et al. (2016)
0.02...0.05 13 Wagle et al. (2019)
0.2...0.35 9...100 Schootemeijer et al. (2019)
0.335 5...60 Brott et al. (2011) -

* Equivalent step value, exponential scheme applied.
* Envelope overshooting included with f,.,. = 0.0174.
# Later evolutionary phases.

Table 2.1: Summary of different overshooting values

Claret and Torres (2019) and Castro et al. (2014) show that the overshooting
value depends on the initial mass for low mass stars and high mass stars,
respectively.

For us, particularly the result for high mass stars is important. While we
adopt a value of aye. = 0.335 for all stars, Castro et al. (2014) suggest, that
the overshooting value should be even higher than that for stars more massive

than 15Mg.

9Again the value Dy is taken at an offset fj inside the convective zone.
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As most values are calibrated to fit the main sequence, there is only vague
information for shell overshooting or later burning phases. In general, overshooting
should be included in all regions, as shown by Li, Chen, and Chen (2019).

Implementation in MESA

MESA allows to set different overshooting parameters for different regions. The
first distinction is made between core-overshooting, shell-overshooting, and shell-
undershooting, meaning the extent of a convective shell below it in the same way as
overshooting is calculated. A second subdivision is based on the burning process
dominating inside these regions. Which type of burning a convective region is
referred to is purely decided from the corresponding temperature range. Since
the burning also depends on the density, this can only be understood as a first
estimate.

As described above, overshooting should be present both in the core and the
shell(s). As we will show in Sec. [3.3.2] MESA has difficulties when using all
overshooting parameters with a value of 0.335 (Brott et al. 2011)).

2.2.5 MLTH+

As argued in Sec. [2.2.1] radiative losses are able to decrease the convection
efficiency. In this case, the energy transport becomes mostly radiative. The star
can get very close to the classical Eddington limit as I'y ~ L,q4["] The proximity
to the Eddington limit leads to an inflated envelope and density inversions for
massive stars that evolve to a WR phase or a pseudo-WR phase (Poniatowski
et al. [2012). However, since this process enforces very small timesteps, the model
cannot converge within reasonable time.

The MESA module MLT++ allows to artificially reduce the superadiabaticity
of the convective zone, thus increasing the convective efficiency. It thus decreases
the energy transported by radiation, reduces the Eddington factor and avoids
inflation. In this case, only the compact core of the WR star is calculated. As
discussed by Paxton et al. (2013), and also obvious from our tests, MLT++ does
not change the final results for the stellar structure.

An alternative to using MLT++ is either to calculate the full WR structure

including the wind, which would be very time-consuming, or to use a consistent

10As discussed by Sundqvist (2020, priv. comm.) , this becomes important at the iron opacity
bump at T =~ 200 kK.
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hydrodynamic boundary condition instead of the hydrostatic one implemented in
MESA.

2.3 Atmospheric Boundary Condition

The pressure at the atmospheric boundary does not vanish but has a finite value.
As we will show in Sec. [3.3.3] the specific choice of this boundary condition can
drastically affect the evolution. In the following, we want to give a short overview
about the theory it is based on.

The atmospheric pressure in MESA is calculated using the approximations
described in Cox and Giuli (1968), their Sec. 20.1. Unfortunately, there are two
errors in their original calculation. Pavlovskii (2014)E was the first to identify
these errors, and implemented a corrected formulation in MESA. In the following,
we want to give a brief overview about the involved approximations and the
corrected result.

In general, we can write the radiative pressure p,.q at optical depth 7 as

F
prad(T) :zT + prad(T — 0) (235)

where the flux F' and p,.q are calculated using the intensity I,

. 1
o consenation gy o / 1(0)pdp = wI(0), (2.36)
0
or [t 2
pal0) =2 [ 10)u e = 21100), (2.37)
c Jo 3¢

Substituting these into Eqn. (2.35)) yields

Prad =—T +5—. (2.38)

In addition, the integrated hydrostatic equilibrium yields, within their approxi-

mations

P =7=. 2.39
- (2:39

HUMESA mailing-list archive, online under https://lists.mesastar.org/pipermail/
mesa-users/2014-May/003663.html


https://lists.mesastar.org/pipermail/mesa-users/2014-May/003663.html
https://lists.mesastar.org/pipermail/mesa-users/2014-May/003663.html
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Nevertheless, as Cox and Giuli (1968)) already argue, this expression is missing the
boundary contribution p,.q(7 = 0). Including the boundary contribution results

in the total pressure in the outer stellar layers

2 F
p_TY (1 N i__) (2.40)
K Tg3 c
Tg k L
=—(1+——7—). 2.41
K ( * T 67rcG]\/[> (241)

At this point, Cox and Giuli (1968) obtained a different result, by evaluating only
2
g.
pressure at the boundary 7 = 0, which if often neglected.

In MESA, Eqn. (2.41) is implemented with an additional forefactox{r_gl. This

can account for the uncertainty due to the approximations used, especially the

at T = The second term inside the brackets corresponds to the radiation

assumption that the radiation field is isotropic even at 7 = 0.
In principle, a second correction term should be included, taking into account
the pressure contribution of the wind. This can be neglected in almost all phases

except if the wind is very thick.

2.4 Rotation

Rotation plays an important role in stellar evolution and corresponding
calculations (Heger, Langer, and Woosley 2000, Maeder 2009, Meynet and Maeder
2017, Ekstrom et al. [2020). Stars do not need to rotate as a solid body, but
show differential rotation and their rotation pattern can be quite complex. A
reasonable assumption is the so-called “shellular rotation”: the angular frequency
2 is constant on isobars. This is ensured by strong horizontal turbulence (Zahn
1992).

There are various effects of rotation. At first, it changes the shape of the star
and its symmetry. The assumption of spherical symmetry has to be replaced by a

more advanced description. How this effects the stellar structure equations from

12Tn addition, their numerical expression in their footnote on p. 591 includes a wrong numerical
factor. The correct expression is

Tg _sklcgs]2 L/Lg
P=—11 641 - . 2.42
K ( +7.64-10 T 3M/Mg (242)

IBMESA parameter Pextra_factor, for Pextra_factor< 0 the old, erroneous result is used.
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Sec. is discussed in Sec. 2.4.1l Moreover, it can drive several instabilities that
are described in Sec. 2.4.2]

2.4.1 Changes of Structure Equations

The equations of stellar structure have to be adjusted, as first done by Meynet
and Maeder (1997) based on the method of Kippenhahn and Thomas (1970). In
the following we will provide this correction only in the Lagrangian formulation.

Rotation changes the shape of massive stars. The radius has to be replaced by
rp = y/ %Vp, where Vp is the volume inside an isobar. Scalar values are replaced
by mean values on an isobar, i.e. p. The independent variable mp is the mass
enclosed by an isobar.

With these definitions, the equation of continuity becomes

an . 1
Omp  Amrip’

(2.43)

To replace the equation of hydrostatic equilibrium, we have to calculate averages

over the surface of an isobar Sp

1
@W=5 [ ado (2.44)
P JY=const

The gravitational acceleration has to be replaced by the effective gravity g.ss.

Rotation manifests itself in a pressure distortion fp
oP Gm P
= — , 2.45
omp 4, Ie ( )
4rrd, 1
fP = 1\
Gm P S P < ge ¥ f>

(2.46)

As an approximation, the energy conservation can be written as

dip _ > e (2.47)

dmp

i

Finally, the energy transport includes either the pressure distortion or another

correction factor fr for the temperature distortion, depending on the transport
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process
OlnT _ Gmp ) fr
amp = 47TT4P fp min {Vad, def_p} (248)
2
4rr?, 1
T = - (2.49)
< Sp ) (9es ) (9efs)

2.4.2 Rotationally Induced Mixing

In a differentially rotating star, a variety of instabilities can occur. These can
cause mixing as well as angular momentum transport (in the following denoted by
the subscript “am”). As convection and the other mixing processes described in
Sec. also all rotational instabilities, and the angular momentum transport are
treated as diffusive processes. In MESA, the total diffusion coefficient resulting

from all processes X is calculated via
Dmi:cmot :f * Qg Z Bmi:mX : DX (250)
X

Dam,rot =Qgm Z ﬁam,X : DX- (251>
X

Each individual contribution can be scaled by Bx['Y] The prefactor for chemical
mixing is typically set to qui, = 1/ 30,E] based on theoretical considerations by
Chaboyer and Zahn (1992)). The angular momentum transport is calculated using
the full influence of all contributions, ag, = 1] In MESA, it is treated as fully
diffusive process. However, there can be advective contributions in other codes,
as we will discuss later.

For all instabilities, first the corresponding instability criterion is calculated. If
the region is unstable, the diffusion coefficient is calculated, otherwise it is set to
Zero.

In the following, we will give a short overview about the physics behind the
processes as well as the relevant relations. A more comprehensive summary is
given by Maeder (2009)) and Heger, Langer, and Woosley (2000)).

HMESA parameter D_X_factor
I5MESA parameter am D mix_factor
16 MESA parameter am_nu_factor
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Dynamical Shear Instability

This instability was derived by Chandrasekhar (1961). An illustrative analysis
was also performed by Hirschi, Maeder, and Meynet (2004).

Let us consider two cells at z, z + dz with velocities V., V 4 §V. If these two
cells are exchanged, work has to be done against gravity. The energy available
is the kinetic one. As the cells are assumed to have the same (average) velocity
after the exchange, the criterion for stability (Richardson criterion) follows from

the Richardson number R7 as
N2
(0v/0z)?

1
Already for Ri < 1 instabilities can occur, however the instability becomes more
important for lower numbers. The Brunt-Viisald frequency is split into the

different contributions

N? =N7 + N}, (2.53)

N7 =% (Vaa = V), (2.54)
2 go

N, =-— ;5&%- (2.55)

Heger, Langer, and Woosley (2000) suggest that the influence of the composition
term V, should be reduced by a factor fﬂ for all instabilities, since the u-
gradients do not fully enter the rotational instabilities. From calibrations of
nitrogen surface enrichment, Heger, Langer, and Woosley find f, = 0.05.

The diffusion coefficient follows as
1 1
Dpsr :§vl = gTAQAr. (2.56)

However, as discussed by Maeder (2009) and Kippenhahn, Weigert, and Weiss
(2012), this effect only occurs in late pre-SN phases.
Secular Shear Instability

Thermal losses can weaken the stability predicted by the Richardson
criterion (2.52)), resulting in a secular instability. The stability is described

I"MESA parameter am_gradmu_factor
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by two Richardson-criteria,

1
Riy =g Reeris PRir> 0 (2.57)
and Riy =Ri,, >0, (2.58)

splitting the effect of temperature and composition gradients

2
NT,M

Vo (2.59)

Rir, =
The Prandt]l number P is given by the ratio of the thermal diffusion timescale to
the timescale of angular momentum diffusion, and the critical Reynolds number

Re it 18 set to 2500 in MESA.

The diffusion coefficient follows from the velocity

v dQ
_ 9.
USSI =\ Re. o dln 7 (2.60)
. . max {Riy, Ri
Dssr =min {Hgg;, Hp} min {vgsy, ¢s} (1— %Z ! 2}), (2.61)
crit

where v is the kinematic viscosity, cs the sound speed, and the typical length scale
Hgssr :‘

dlnvgsr

Solberg-Hoiland Instability

For rotating stars, the Ledoux criterion of stability from Eqn. (2.18]) can be

generalised including an additional term Ngq

N? =N2,+ N2 4+ N§sinf > 0, (2.62)
1 d(Q2w?
525—( ' ) (2.63)

where w and 6 are the cylindrical coordinates. Rotation can make a region stable

against convection. The diffusion coefficient is given by
d d d(r20)° 1
D:2<_p __p>+ ()" 1 (2.64)
p \ dr

dr

r 2

DSH = (mln {HSH; Hp} D ) /TdyTu (265)
gHp

ad
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where Hgp is the extend of the unstable region and 74, = +/r3/(Gm) the

dynamical timescale.

Eddington-Sweet Circulation

The Eddington-Sweet or meridional circulation and its treatment is still under
discussion. It was fist studied by Eddington (1926)), and a more quantitative
analysis was performed by Sweet (1950). Zahn (1992)) found an improved solution,
taking into account momentum conservation.

The general idea is based on the van Zeipel theorem
F o~ gegy. (2.66)

The flux along the polar axis is larger than in other locations, especially at the
equator. A resulting thermal imbalance drives global circulations.

In general, this is an advective transport effect. As argued by Maeder (2009),
however, in combination with horizontal turbulence D, it might behave the
same as a diffusive process for chemical transport. This is not true for angular
momentum transport, where, even in combination with horizontal turbulence,
there remains an advective term. Some stellar evolution codes, such as GENEC,
include the advective treatment for angular momentum transport, while other
codes, such as MESA or STERN, treat it as a diffusive effect. This can lead to
huge differences, as we will see in Sec. [3.4.1}]

An expression for the circulation velocity was found by Kippenhahn (1974))

a 0?31 [ 2 (e, r2 o 2r? 3
v — Vad r : (en+e)r?  2r% . (2.67)
0 (Vaa — V) (Gm) l m  dmwpr
Composition gradients can have a stabilising effect
VEs =|ve| —’vu} , (2.68)
H, PV
v, = ) 2.69
! T;(H(S(v_vad) ( )
where the Kelvin-Helmholtz timescale is
G 2
mn (2.70)

TkH :m
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The situation is unstable if v > 0. In this case the diffusion coefficient is calculated

from the circulation velocity

D =min{Hgg, Hp} min {vggs, ¢} . (2.71)

dlnvgg

The typical length scale of this instability is Hgg :’

Goldreich-Schubert-Fricke Instability

This secular instability was described by Goldreich and Schubert (1967) and Fricke
(1968)).

First Goldreich and Schubert only analysed the destabilisation by highly
negative N3 < 0, later Fricke included a finite viscosity v and thermal diffusivity

Kiperm such that the condition for instability becomes

Y N2, 4+ NZ <0 (2.72)
therm
v 00?
N2, —|o——| <0. 2.73
o Ktherm ad “ 87; ( )

The diffusion coefficient depends on the characteristic velocity

QHTT 1
2 dinr

DGSF :min {HGSF7HP} min {UGSF,CS} R (275)

VGSF =|Ve — ‘Uu| , (2.74)

dr
din(T/5)
distribution, and Hggp is the minimum of the extent of the unstable region and

dr
dlnvgsr

where Hy/; = is the scale height of the temperature/angular momentum

the typical length scale

Viscosity

Small scale motions of atoms or ions can transport angular momentum. We
follow the description of Kippenhahn, Weigert, and Weiss (2012). The viscosity

coefficient due to this microscopic motion is given by

n :plvtherma (276)
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where [ is the mean free path. Using the Navier-Stokes equation including viscosity,
the timescale follows as

d*p
Tvise ~—— 2.77
; (2.77)

where d is the typical length-scale of changes in the rotation 2. As 7 is typically
O (1) in cgs units, d is O (Rg) and p is O (1) in cgs units, the typical timescale is
Tpise 2 10%2s22 3 - 10° Gyr which is much larger then the lifetime of stars and even

than the universe. Thus the influence of viscosity can be neglected.

2.5 Magnetic Fields

Magnetic fields in the sun have already been measured by Hale (1908). Further
evidence for the presence of magnetic fields in massive stars was the observation
of strongly magnetic neutron stars (magnetars). Duncan and Thompson (1992)
and Thompson and Duncan (1995) developed the theory of magnetic neutron stars
which requires magnetic fields in the progenitor.

Meanwhile, magnetic fields have been detected in a variety of stars. Depending
on the stellar mass, different methods can be used to observe magnetic fields. A
large survey of magnetic fields in massive stars is the MiMeS survey by Wade
et al. (2009, 2011, 2016).

While for low mass stars the Zeeman-effect in a single spectral line is sufficient to
derive the magnetic field strength, for massive stars the noise is too high. Instead,
a cross correlation of the variation in polarisation across spectral lines all over the
spectrum has to be performed to increase the signal-to-noise ratio.

Different observations agree that the total number of massive stars hosting
magnetic fields is ~ 10% (Hubrig 2008, Grunhut, Wade, and MiMeS Collaboration
2012, Bagnulo et al. [2020)).

Typical magnetic field strengths have been summarised by Petit et al. (2012)
and range from some 100 G for so-called dynamical magnetospheres to very high
field strengths of some 1000 G for “centrifugal magnetospheres”. Magnetic fields
play a role for all stages of stellar evolution. From fragmentation of molecular
clouds (Palau et al. 2020)), over star formation (Liu et al. 2020, Girart et al. 2009,
Zhang 2020) to remnants (Schneider et al. 2020, Tremblay et al. [2015) and all
stages in between, which we are particularly interested in.

There are two main effects of magnetic fields. The first is its impact on the
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stellar wind. A dipole field significantly changes the structure of the wind (ud-
Doula and Owocki 2002, ud-Doula, Owocki, and Townsend 2008). Material can
get trapped by closed field lines and falls back to the surface. The total mass
loss thus is reduced. Petit et al. (2017)) show that this effectively mimics a star
with lower metallicity. The reduced mass loss might explain the existence of more
massive black holes and gamma-ray bursts (GRB) also at higher metallicity.

Keszthelyi et al. (2020) show, based on the idea of ud-Doula, Owocki, and
Townsend (2009)), that the coupling of the surface to the wind can slow down the
rotation drastically. In addition, internal magnetic fields cause efficient angular
momentum transport and solid body rotation (Maeder and Meynet 2003, [2004,
2005)).

The source of magnetic fields is still under discussion. For low mass stars, a
dynamo effect in the convective envelope can explain the observed magnetic fields.
However, for massive stars this mechanism does not work as they do not have a
convective envelope but a convective core where the magnetic field is well confined
due to the high density and composition gradients (MacDonald and Mullan [2004)).

Spruit (1999, 2006) found an alternative dynamo mechanism maintaining the
magnetic field acting in the radiative envelope. The dynamo needs some fossil field
and consists of two steps: A poloidal magnetic field B (with radial component B,
important in this context) is generated by the displacement of the toroidal field.
Differential rotation twists this poloidal field into a toroidal one. The mathematical
description is complicated, and a comprehensive summary is given by Maeder and
Meynet (2004)).

Soon after the formulation, this description has been implemented into various
stellar evolution codes (MESA: Paxton et al. 2013, STERN: Petrovic et al. [2005),
Brott et al.|2011)). It can reproduce the rotation rates of remnants (Heger, Woosley,
and Spruit 2005/ and Suijs et al. 2008) as well as the solar rotation rates as
Eggenberger, Maeder, and Meynet (2005) showlf]. Nevertheless, the treatment is
inconsistent as only angular momentum transport is included. If chemical mixing
would be calculated, the effect would be much too large.

The validity of the Spruit-Taylor dynamo is still under discussion (Zahn, Brun,
and Mathis 2007, Denissenkov and Pinsonneault [2007, Braithwaite and Spruit
2017)) and most likely cannot explain the observed magnetic fields (Cantiello and
Braithwaite 2019). One currently used alternative are fossil fields. These can

survive the main sequence for massive stars as Alecian et al. (2019) discuss. It is

18Charbonnel and Talon (2005) show that this could also be explained by gravity waves.
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not clear, if they decay until the B supergiant phase or are just too weak to be
observed.

Another option are that magnetic fields originate from mergers (Ferrario and
Wickramasinghe 2005, Ferrario et al. [2009, Schneider et al. 2019)). This has the
advantage that it can explain, why only 10% of the massive stars host magnetic
fields.

2.6 Stellar Winds

The winds of massive stars are important for the evolution of the stars as well
as their neighbourhood. Massive stars can enrich the interstellar medium with
processed elements and also trigger star formation. For the star itself the mass
loss is a decisive parameter to determine the evolution, since massive stars can
loose a significant fraction of their initial mass.

Exact mass loss rates are still under debate, and a still valid review has been
presented by Puls, Vink, and Najarro (2008)).

Depending on the evolutionary state, as well as the temperature of the star,
different mechanisms can be responsible for the mass loss. The main mechanisms
for massive stars are line driven and dust driven winds. For very massive stars,
M > 80M,, even a continuum driven wind, which is independent of metallicity
7, might be present, changing the behaviour of stars at low metallicity.

A huge uncertainty comes from the mass loss rate of luminous blue variable stars,
which is very high but, in MESA, missing an adequate description, as discussed
in Sec. 3.2.3

Typical mass loss rates for massive main sequence stars at solar metallicity are
on the order of O (10_7“'_5) Mg /yr on the main sequence. During later phases

the mass loss rates can be higher, up to ~ 10738M /yr.

2.6.1 Line Driven Mass Loss

The theory of line driven winds has been pioneered by several authors (Lucy and
Solomon (1970, Castor |1974, Castor, Abbott, and Klein (1975 (CAK)). In the
following we will give a short overview about this theory.

The wind can be described by the equation of continuity and the Euler
equation (2.5). An expression for the line acceleration has to be included. A

comprehensive summary of the derivation is given by Maeder (2009), and Puls,
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Springmann, and Lennon (2000). In this thesis we only want to give the most
important steps and relations.

The CAK line acceleration is written as acceleration resulting from the
most important continuum processes in massive hot stars, Thomson scattering
(scattering at free electrons), corrected by a so-called force multiplier M (t). The
latter is a function of the depth parameter ﬂ, that takes into account the

contribution of line-processes relative to Thomson-scattering,

o F
c

gl == M(t), (2.78)

where o, is the electron-scattering cross section oy, divided by the density, o, =

”—Z’L. Summing up over many lines, CAK find
M(t) =kt™ (2.79)

where k and « are force multipliers. « is the ratio of the contribution of line

acceleration from only optically thin and all lines. Typical values range from

o= % . % The optical depth parameter is calculated following the approximation

by Sobolev (1947),

_ OePUth

+—
dv/dr’

(2.80)

where vy, is the thermal velocity. Inserting the force from Eqn. (2.78) in

1

the equation of motion, setting @ = 3, applying specific approximations and

integrating yields the velocity law

U =Un (1 — E)é . (2.81)

r

The exponent % can be generalised to . Pauldrach, Puls, and Kudritzki (1986)
find # = 0.8 taking into account the finite disk the star covers. The terminal
velocity v is typically on the order of O (3ves.).

From the equation of motion, when the escape speed v.. accounts for the

effective gravity corrected for Thomson scattering, the mass loss rate follows as

M ~LVo (GM (1—T,)) | (2.82)

19¢ is an approximation (in the limit of steep velocity gradients) for a line optical depth, with
a line strength corresponding to electron scattering.
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Line driven wind strongly depends on metallicity. A scaling
M =Za5 (2.83)

can be found (Puls, Springmann, and Lennon 2000). An important relation is the
wind-momentum luminosity relation (WLR). It connects the mass loss rate, the
terminal velocity and the stellar radius to the luminosity, and can be derived from

the above results by approximating o & 2/3,
Muv RY? ~ LV, (2.84)

This relation allows precise distance determinations. The mass loss rate and the
terminal velocity can be measured from Ha emission lines and UV P-Cygni profiles,
respectively.

One huge source for uncertainties in the measurement of mass loss rates is
clumping (wind inhomogeneities) in the mass outflow. The effect of clumping
has been suggested in various simulations (Owocki, Castor, and Rybicki [1988],
Feldmeier 1993)), and confirmed in various observations (e.g., Najarro et al. [2008,
and the review by Puls, Vink, and Najarro 2008)). If neglected in corresponding
analyses, clumping would mimic higher mass-loss rates than actually present.
Though the precise clumping degree is still unknown, new measurements and
simulations (Sundqvist et al. 2019, Bjorklund et al. 2020) indicate that the

currently used mass-loss rates should be reduced by a factor of 2...3.

Vink Mass Loss Rates and the Bi-Stability Jump

A widely used recipe to predict line driven mass loss rates has been developed by
Vink, de Koter, and Lamers (2001]).

One of their important results (consistent with earlier findings by Pauldrach
and Puls 1990) is that the mass loss rates are not smooth but have jumps at
certain (effective) temperatures. At these temperatures, the force multipliers
change drastically due to ionisation effects, finally affecting ve, and M.

The exact positions of these jumps are metallicity dependent. According to

Vink, de Koter, and Lamers, their position should be related to a density

A
log (p) = — 13.636 + 0.889 log (Z_@) (2.85)
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which leads, for galactic conditions, to the following “jump temperatures”:

TP =192 + 10.41og (p)~ 35 kK (2.86)
TP =61.2 4 2.59log (p)~ 25 kK (2.87)
TH =43 4+ 1.9log (p)~ 15 kK. (2.88)

The jump at 35 kK is due to carbon recombination and only plays a role in
low metallicity environments. As the mass loss rates decrease with decreasing
metallicity, it does not play a crucial role at all. The other two jumps are a result
of changes of the ionisation state or iron.

Models by Petrov, Vink, and Gréfener (2014, 2016), as well as observations
(Lamers, Snow, and Lindholm (1995, Markova and Puls 2008) revise the above
jump temperatures. The jump predicted by Vink, de Koter, and Lamers to be
located around 25 kK (usually called the first jump) is most likely around 20 kK.
The “second jump” predicted at ~ 15 kK is thought to be actually located below
9 kK and thus below the range where the Vink mass loss scheme is typically
applied. Furthermore, de Koter (2008) argue that the jump has observational
problems, and different observations disagree on its impact.

Because of these arguments, MESA only includes the jump calculated following
Eqn. at T. 5 ~ 25 kK where Fe IV recombines into Fe III. Other codes such
as GENEC also include the second jump at ~ 15 kK.

Accounting for the above jump temperatures, Vink, de Koter, and Lamers
provide mass loss rates that are applicable for T¢sr ~ 12.5...50 kK.

On the hot side of the first jump they find

M L
1 —_6. 921941 2.
og (M@/yr> 6.697 + 2.19 0g(105L®) (2.89)
M v
—1.3131 —1.2261 >
313 log (30M@) 6 log <21)esc)
2
+0.9331 I 10.92 [ 1 a
OB\ TI0P K Sl G T Y%

Z
0.85log ([ — | .
roasis (7 )

The ratio of terminal to escape velocity is a result by Pauldrach, Puls, and

Kudritzki (1986), including empirical metallicity scaling following Leitherer,



29 Physics of Massive Single Stars

Robert, and Drissen (1992)

Ve o6 (i)m (2.90)

Vesc Z ®

When crossing the jump, the mass loss increases by a factor of 5 or more. On the

cool side Vink, de Koter, and Lamers predict

;}w =13 (Z%)O'B, (2.91)
log (%/yr) = —6.688 4+ 2.21log (105LL®> (2.92)
~1.3391log (30]\1\44@) — 1.601log (22;"")
+ 1.07log (ﬁ)

+0.851 z
Bdlog | — .

According to Vink, de Koter, and Lamers (2001)), this recipe only covers the
metallicity range 37 ... %Z@. Since the wind is very weak for very low Z,
basically no mass is lost for a non rotating model. In our investigations, we also
apply this scheme for lower metallicities than %Z@.

Alternative mass loss descriptions are given by Nieuwenhuijzen and de Jager
(1990) and van Loon et al. (2005)).

An important observational finding is that the mass-loss rates change only
weakly over the jump (if at all), contrasted to the theoretical predictions from
above (Markova and Puls 2008). In connection with the erroneous position of
the jump temperatures, this leads to large overestimates of the mass-loss rates in
the jump regimes and particularly in the region below 15 kK, where the Vink,
de Koter, and Lamers mass-loss rates might overestimate the actual values much

more than the factor 2...3 discussed above.

Wolf-Rayet Mass Loss

Nugis and Lamers (2000) observed 44 WN and WC starf?| to derive mass loss
rates. The mass loss in this phase is much higher than during earlier phases.

They find that the mas loss rates depend not only on metallicity Z and luminosity

20Compare Sec. for an explanation of the Wolf-Rayet classification.



Physics of Massive Single Stars 30

L, but also on the surface helium content Y,

M L 1.29
=10"". (—) Y7708, (2.93)
Mo /yr Lo

This is already smaller than previously thought, by about 0.2...0.6 dex. Because

of clumping, the real rates might be even lower.

2.6.2 Dust Driven Mass Loss

As an alternative to the absorption and scattering in spectral lines, also dust
grains can act as a driver. Dominik (1990) provides an extensive overview about
the formation of dust and how it drives the mass loss. For red giants, molecules can
form in the cooler outer photosphere. For even lower temperatures, the molecules
can form dust grains. The dust can absorb high energy photons while radiating
away infrared radiation. Observations have proven the infrared excess of such
giants (Sakon et al. |2010). In addition, the photon momentum is redistributed
from the dust to the gas by collisions. This way dust can drive a very strong mass
loss.

While this process works for asymptotic-giant-branch stars, it is not proven if it
also works for red supergiants, i.e. massive stars. The major problem is the wind
close to the star, where the dust forms. In evolved red giants, strong pulsations
accelerate the lower wind and compress the plasma, such that dust can form. In
red supergiants, there are no such pulsations. It is speculated, that the lower wind
of these stars might be accelerated by molecular lines (Josselin and Plez [2007)).

De Jager, Nieuwenhuijzen, and van der Hucht (1988)) found an empirical formula

for the mass loss rates of supergiants,

M L T
1 =1.7691 — ) —1.6761 — | — 8.158. 2.94
og (M@/yr> 769 log (L@) 676 Og(lK) 8.158 (2.94)

This equation was developed for roughly solar metallicities, it does not contain

any metallicity dependence, which can be a problem for very low metallicity.
The scaling of the de Jager, Nieuwenhuijzen, and van der Hucht (1988) mass loss
rates with metallicity is still under discussion. Van Loon (2006) discuss different
possibilities. The absorption by dust may reach saturation, such that also in
reality there is no metallicity dependence, at least in the range 0.27, < Z < 3Z.

However, for lower metallicities the molecules may contain more oxygen compared
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to carbon and thus be a less efficient driver. For very low metallicities, no dust
may form at all.

As an alternative, very metal poor stars may have a chromosphere driven mass
loss. This idea is described by Schroder and Cuntz (2005)). The chromosphere is
highly turbulent. Alfvén waves transport energy to outer layers and deposit it in

the chromosphere. They can drive a mass loss rate

LR, [ Typ \** 9o
M = 1 2.95
T, (4000}{) T B00g. ) (2.95)

which is similar to Reimers’ law (Reimers 1975, |1977). From a fit to the red-giant-

branch they find n = 8- 107 M, /yr. Thus, the mass loss may be even higher for
metal poor stars, as pointed out by van Loon (2006)).

However, this high mass loss has one problem, and thus most likely is not
realistic. The Alfvén point, where the mass loss originates, is far outside. The
mass in this region is too low to explain high mass loss rates.

An alternative was provided by Mauron and Josselin (2011). They add an
additional term « log (%), a = 0.7 to the de Jager, Nieuwenhuijzen, and van der
Hucht (1988) rates from Eqn. (2.94). This is similar to the scaling of other mass
loss rates such as from Vink, de Koter, and Lamers (2001)).

Until to date it is not clear, which of these assumptions is the most physical

one.

2.6.3 Mass Loss at Critical Rotation

If the star gets closer to critical rotation, the outer layers can become unstable
and finally unbound.

In general, there are some requirements a mass loss scheme for rotating stars
has to fulfil. According to the van Zeipel theorem, the flux is higher at the poles,
such that also the mass loss is higher. The total mass loss should not change as
long the star is not too close to criticality. In contrast to that, when the star gets

closer to critical rotationﬂ

GM

chit = (1 - Fe) F;

(2.96)

21The following is only a 1d approximation, neglecting gravity darkening. The reality is more
complex, see, e.g., Puls, Vink, and Najarro (2008]).
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the centrifugal forces at the equator approach the gravitational force and the
material can become unbound@. Thus the mass loss increases drastically. To
cover all effects, full 3d simulations, and, even more important, calculations of the
occupation numbers in Non-Local Thermodynamic Equilibrium (NLTE), would
be necessary.

MESA has different possibilities how the increase in mass loss is approximated.

The first option is a correction factor

% _ (1 - Qﬂt) - (2.97)

which was derived by Bjorkman and Cassinelli (1993)) based on results by Friend
and Abbott (1986). Langer (1998) found o = 0.43.

However, the validity of this form has been questioned by Owocki, Cranmer,
and Gayley (1996). A better description is the generalised QI' limit, which was
derived by Maeder and Meynet (2000)).

As an alternative, MESA can calculate an “implicit mass loss rate”, such that
the rotation is kept just below the critical value. If the rotation is too high,
Q > Qlimiﬂ, then the mass loss is increased, until the rotation is subcritical
again, and the mass loss rate within a given tolerance. We choose an upper limit
Qimir = 0.96 consistent with Ferraro (2020). A more detailed description on how
this is evaluated in MESA is given in the App.[A.5.2]

2.6.4 Dutch Wind Scheme

In this work we use the description of Glebbeek et al. (2009) that combines different
mass loss rates for different regimes where they are applicable. For stars at high
temperatures (> 10 kK) that still have their envelope, the Vink, de Koter, and
Lamers (2001)) rates are applied.

Wolf-Rayet stars are identified by a maximum surface hydrogen content X < 0.4
(Eldridge and Vink 2006). In this case the rates by Nugis and Lamers (2000) are
used.

For lower temperatures (below 8 kK), so mainly for Red Supergiants, the de

Jager, Nieuwenhuijzen, and van der Hucht (1988) rates are utilised.

22 As we can see, another alternative to increase /s is to have I', — 1
23MESA parameter surf_w.div_w_crit_limit
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3 Stellar Evolution and MESA

The evolution of stars is strongly mass dependent. More massive stars are more
luminous and thus evolve faster, but can also reach later burning phases. In
addition to mass, there is a metallicity dependence of the evolution. Metal poor
stars are more compact and have less mass loss. Finally, the evolution depends on
the rotation rates.

An illustrative summary about stellar evolution is given by Kippenhahn,
Weigert, and Weiss (2012). In the following, we want to provide a short overview
about the different phases of evolution, and the dependencies of the evolutionary
pathways on the most important parameters.

Stars can be characterised depending on their initial mass or, more precisely,
on some characteristic properties of their evolution. While low mass stars (M; <
2M) and intermediate mass stars (M; ~ 2...8Mg) can have degenerate burning
phases already in their earlier evolution, high mass stars (M; 2 8M) ignite all
burning processes until carbon in a non degenerate core. Thus their evolution is
smooth, they do not produce any flashes.

In addition, high mass stars end their lives with a core collapse, and produce
massive remnants such as black holes, or neutron stars which we will discuss later
in more detail. As the aim of this thesis is to provide initial stellar mass ranges
for these compact remnants to form, and use the remnant masses for statistics
useful for microlensing observations, as discussed in Chpt. [I, we are particularly

interested in the evolution of massive stars.

3.1 Main Sequence

A star is born, when a contracting cloud ignites hydrogen burning in its center.
This is when the star reaches the zero-age main sequence (ZAMS) and starts

the evolution that we consider. The following phase, while the star transforms
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hydrogen into helium in its center, is called main sequence (MS), as it lasts more
than 85% of its total lifetime.

There are different processes, that can convert hydrogen into helium. In general,
four protons (hydrogen nuclei) are needed to combine into one helium nucleus. The
simplest way to imagine is the p-p chain. Protons build up into a helium nucleus in
several steps. Especially the weak interactions, that convert protons into neutrons,
determine the timescale of this process.

An alternative is the CNO cycle. It uses carbon, nitrogen and oxygen as catalyst,
and thus can change their individual number fractions while the total number is
unchanged. Especially the increase of carbon at the expense of nitrogen can be an
observational tracer, if it is mixed to the surface. The CNO cycle is much more
efficient than the p-p chain for stars more massive than M; > 1.2M, (Maeder
2009).

Because of the steep temperature gradient due to efficient burning, massive stars
have a convective core and a huge radiative envelope. This provides very efficient
mixing in the core, as argued in Sec. 2.2

The burning processes adjust to the outer properties of the star. In the other
direction, there is only some feedback, such as ionisation. As massive stars are
mainly radiative during the main-sequence, the total luminosity scales with L ~
Meu*/k, where a ~ 2.3...3, and u is a mean value averaged over the whole
stellar radius. We can use this relation to obtain an estimate of the MS lifetime.
The material available for fusion processes is ~ M, typically O (0.1) M;. Thus, a
simple scaling relation for the lifetime is 736 ~ % ~ M=% Massive stars live
shorter than lower mass stars, typically O (10%-7) yr.

In addition, the fact that L ~ u* predicts that the luminosity increases on the
main sequence as more hydrogen is transformed into helium. In parallel, the star
expands, but with a very weak dependence of R on p, such that the temperature
Te.ss decreases.

Different parameters such as rotation rates and overshooting values can influence
the evolution. In general, all effects that allow more efficient mixing and increase
the core mass during the main sequence also increase the luminosity.[] They also
increase the lifetime as more material is available to be burned.

A special case is when the mixing is so efficient that it causes the star to evolve

quasi chemically homogeneously (QCHE). These stars evolve on different ZAMSs

I Analytical relations connecting core and envelope masses to observables can be found in
Farrell et al. (2020).
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(in dependence of composition) to higher temperatures and higher luminosities.

3.2 Later Evolutionary Phases

3.2.1 Hertzsprung Gap

When hydrogen is depleted in the core, the star contracts as no internal energy
source, and thus no stabilising pressure is present. The effective temperature
increases, appearing as “hook” after the MS in a HRD.

As soon as shell burning sets in, the core continues to contract, but the envelope
expands in a quasi-static way. This is known as “mirror effect”, and is found in
many simulations. This expansion happens on short thermal timescales, making
observations of stars in this phase very unlikely. The region where the stars evolve
rapidly is known as Hertzsprung-gap.

As its radius is increasing, the star evolves to lower effective temperatures.
Consequently, the opacity in its envelope is increasing and finally allows for
convection. The star forms a huge convective envelope, and the evolution continues
close to the Hayashi line with almost constant temperature. The Hayashi line is
the (mass and metallicity dependent) region of stars that are fully convective. It
marks a lowest effective temperature, where stars can exist.

If the convective envelope extends deep enough, processed material can be mixed

upwards, and change the surface abundances, known as “dredge up”.

3.2.2 Helium Core Burning to Carbon Core Burning

As soon as central helium burning is ignited, the evolution continues on the longer
nuclear timescale 7,,.. Stars more massive than 2M, ignite helium in a non-
degenerate core, defined as the limit for intermediate mass stars.

As intermediate mass stars evolve along the Hayashi line, they form a radiative
envelope at the tip of the red giant branch. After core helium ignition, intermediate
mass stars can perform one or more blue loops, again found from stellar evolution
calculations. On that way, stars up to 20M, can cross the Cepheid-instability
region several times (Turner 1996)).

Unlike low and intermediate mass stars, higher mass stars can continue the
bluewards evolution if they lost enough mass and become blue supergiants or even
Wolf-Rayet stars.
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As the energy released by burning helium is lower than for hydrogen burning,
and also the amount of available material is smaller, the timescales of these later
phases become shorter.

Massive stars even ignite carbon burning in a non degenerate core. This burning
phase has a convective core for stars up to 19M, and a radiative one for higher
masses, because of neutrino losses (Timmes, Woosley, and Weaver |1996)). The
timescale is on the order of O (103) yr and even shorter for later burning phases.

The evolutionary paths discussed depend strongly on the initial mass,
overshooting and mass loss rates. While stars up to 25M end their life as red
supergiants, higher mass stars have more mass loss, and thus end their life as blue
supergiants or even as Wolf-Rayet stars. Massive stars can also evolve through

the luminous blue variable phase, that will be discussed in the next section.

3.2.3 Luminous Blue Variable Stars

Luminous blue variable (LBV) stars are discussed, e.g., in a review paper by
Humphreys and Davidson (1994). They are unstable massive stars, that are
located characteristically in the blue, but do not need to be there always. The
region of instability is specified by the observational Humphrey-Davidson limit,
a temperature dependent maximum luminosity. Typically, LBV stars are located
close to the Eddington limit ', = —£L— within a factor of 2, such that their

drcGM
stability is reduced. Nevertheless, the mechanism of the instability is still under

discussion. There may be even a combination of several.

One idea was the € mechanism, which is no longer a leading explanation.
Modern ideas include a modified Eddington limit, turbulent pressure, or some
subphotospheric instability. Some LBVs may be a result of binary interactions, as
suggested by their bipolar structure.

The instability manifests itself on different scales. There can be small variations
up to giant eruptions as observed for nCar (van Genderen and The [1984). Changes
in the observed properties are mainly connected to a variability in temperature,
not luminosity. This is related to an optically thick, expanding atmosphere, that
we observe as “pseudo-photosphere”. As the surface and thus the radius is hard
to define, an apparent temperature 7,,, defined from the energy distribution, has
to be employed. Two states can be observed. An eruptive one at Tgp,, ~ 7...8 kK
and a quiescent one at T,,, ~ 12...30 kK. During the eruptive state the mass loss

is drastically increased, up to M = 10~%~*M_ /yr. However, this value is model
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dependent and highly uncertain. There can be single eruptions where 2...3Mg
are lost within a few years, as observed for nCar.
The star stays in the LBV phase for some 10000 yr, when it finally lost enough

mass to become a Wolf-Rayet star.

3.2.4 Wolf-Rayet Stars

Wolf-Rayet (WR) stars have been reviewed by Crowther (2008). (Classical) WR,
stars are “naked cores”, meaning massive stars that completely lost their hydrogen
rich envelope.

Similar to LBV stars, WR stars are characterised by a very dense wind, such
that the temperature definition is challenging. Differences, depending on the
temperature-definition, can be seen, e.g., in the work by Groh et al. (2014). To
compare MESA calculations with observations, they should be coupled to a stellar
atmosphere code.

The classification of WR stars is based on the spectrum. Surface abundances
and ionisation stages act as discriminant between different types. If the ionisation
is high, they are called “early type”, for low ionisation “late type”. If they still
show helium in their spectra, they are classified as WN. Helium poor, but carbon
rich stars are classified as WC, where there exists a transition WN/C type. If they
show primarily oxygen on their surface, they are called WO stars. This distinction
is connected to an evolutionary scenario. Stars first loose their hydrogen envelope,
and become WN stars. If they loose their helium envelope, they become WC and,
for even more mass lost, WO stars.

An exception are the mid-type WNH stars which still show hydrogen in their
spectra. These are believed to still be on the main sequence. Massive stars can
develop a pseudo-photosphere for very strong mass loss and thus show a WR like
appearance.

Also the mass loss rates of classical WR stars are very high, as described in
Sec. 2.6, However, many values derived from observations need to be reduced,

when accounting for clumping effects.

3.3 Important MESA Parameters

As discussed already, MESA contains a variety of different options for the

treatment of physical processes. While working with MESA, we found some of
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Figure 3.1: Comparison between a 40M; model calculated using the Ledoux
criterion (solid) and the Schwarzschild criterion (dashed), without overshooting
and rotation. The smoothing parameter is varied between 0 and 3, and affects
the evolution drastically if the Ledoux criterion is applied. Without smoothing,
the track calculated with the Schwarzschild criterion separates from the one with
Ledoux criterion.

them to be of great importance for the evolution, while others have only small
effects. In the following we want to summarise the impact of some important

parameters.

3.3.1 pu-Barrier

Theoretical considerations predict a u-barrier at the boundary of the convective
core, if it is treated with the Ledoux criterion.

The Ledoux and Schwarzschild criterion are the same, until a composition
gradient has build up. From this moment on, the convective core predicted by
the Ledoux criterion is limited to the region inside this “u-barrier”, and thus
is smaller compared to calculations with the Schwarzschild criterion. As argued
already, a smaller core mass leads to a lower luminosity. We see this as separation
on the main sequence shown in Fig. for the black tracks.

Rotation produces two opposite effects. Rotational instabilities can mix material
through the convective envelope, reducing the effect of the composition gradient.
In contrast, also these processes are affected by the p-barrier, and may not allow
mixing beyond it, as described in Sec. 2.4.2] In most cases, mixing beyond the
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p-barrier is still shielded. Finally, this leads to lower luminosities in the Ledoux
case, compared to the Schwarzschild one, where processed helium is still mixed to
the surface.

However, MESA smooths the composition gradient by default. The parameter
num_cells_for_smooth_gradlL_composition_term is set to 3. The impact can be
seen in the red curve. The track calculated using the Schwarzschild criterion
is unchanged, while in the Ledoux case it changes drastically and produces
unphysical results. If overshooting is applied, the differences on the main sequence
are removed, as overshooting allows mixing beyond the u barrier. One case, where
the impact of the p-barrier can still be seen, are rotating models at very low
metallicity. The smoothing parameter is decisive for the existence of this barrier. If
smoothing is applied, more models show QCHE compared to calculations without
smoothing.

We conclude that the smoothing parameter should only be set, when the

Schwarzschild criterion is applied, or, even better, turned completely off!

3.3.2 Undershooting Problem

As described in Sec. [2.2.4) MESA has the possibility to set different overshooting
values for different regions. During our analysis we found that requiring a too high
value for undershooting below a shell can be problematic and causes the program
to terminate.

An explanation for this problem can be found by looking at a Kippenhahn
diagram, which is shown in Fig. Strong undershooting mixes unprocessed
material down into the core. Thus the burning shell moves down, and can finally
cause the He burning in the core to stop. This behaviour is most likely not physical.

The undershooting problem does not occur in all cases. The limiting
undershooting value seems to depend mainly on the initial mass as well as
metallicity. Especially, we can see a huge difference between the models with
Milky Way (MW) and Large Magellanic Cloud (LMC) metallicities. While with
MW abundances the shell moves down slightly until it becomes radiative, for LMC
abundances it moves further down and thus is more unstable.

This difference finally goes back to differences in mass loss. Reducing the mass
loss value of the MW model by a factor of 0.4 gives similar results as for the LMC.
The more mass is lost, the shorter the H burning shell is convective. Thus high

mass loss can prevent this instability.
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Figure 3.2: Kippenhahn diagrams to demonstrate the undershooting problem.
Comparison of a non rotating 30M; model with core and shell-overshooting
parameter set t0 Qopercore = Qovershelr = 0.335, at MW (left), and LMC (right)
metallicity. The shell-undershooting parameter is varied between ,ger = 0.09
(top), and aupger = 0.335 (bottom). Different processes are indicated by
different colors: convection, overshooting, , . burning
(> 10erg/s), and burning (> 100erg/s). Lines indicate the total mass (solid),
the He-core mass (solid), and the C-core mass (dashed). High undershooting at
LMC metallicity causes the convective shell to move down, and the calculation to
terminate.

Even though there is some difference in final masses, AM; ~ 5M;, for the 30M
model with MW abundances discussed, we completely neglect shell undershooting

and also shell overshooting to avoid this problem.

3.3.3 Boundary Conditions

The atmospheric pressure applied in MESA is discussed in Sec. As
many approximations enter the derivation, MESA includes the parameter
Pextra factor to “manually” modify this quantity. Typical values should be
on the order of O (1).

We found, that the choice of this parameter can affect the evolution already on

the main sequence, depending on the MLT++ setting gradT_excess_max_change.



41 Stellar Evolution and MESA

6.05

6.00

5.95

5.90

log(L/Lo)

5.85

4.8 4.6 4.4 4.2 4.0
log(Tes/K)

©
®

Figure 3.3: Comparison between different boundary conditions. Value of
Pextra value varied between 1 (dashed) and 2 (solid), and gradT max change
varied between -1 (meaning no limitation) and 0.001. Depending on the choice of
these parameters, the calculation can become unstable.

A default value is not set, whereas Keszthelyi (2015)P] limit the changes MLT++
can do, and set a value of 0.001.

In Fig. [3.3] we compare these different possibilities. We start with a comparison
of the calculations without MLT++ limitations (dashed curves). Depending on
the Pextra factor setting, the curves separate. Already on the MS a critical
I'. can be reached when we set a value for Pextra_factor of 1 which we see as
instability close to the hook. This can be avoided by a higher value of 2. In
addition, it slightly shifts the position of the hook by AlogT¢ss ~ 0.1.

Another way to avoid such an instability is setting gradT_excess max_change
to 0.001. This also diminishes the differences between different Pextra factor
values.

In order to increase the stability of our calculations, we choose Pextra factor=

2 and gradT_excess_max_change= 0.001.

3.4 Comparison with Other Calculations

Various authors have calculated model grids consisting of massive stars, utilising

different stellar evolution codes. Besides MESA, two very popular codes used for

2MESA inlist available at https://doi.org/10.5281/zenodo.3250412
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such calculations are STERN and GENEC. In the following, we want to compare
grids calculated with these two codes, and similar calculations we have performed
with MESA.

3.4.1 Comparison with Ekstrom et al. (2012)
Physics

Ekstrom et al. (2012)) use the GENEC code for their calculations, covering the
evolution until late pre-supernova phases. The main difference to the MESA
code is the advective treatment of the Eddington-Sweet circulations for angular
momentum transport, and the second bi-stability jump that is missing in MESA.
We use the parameters described in their original paper. In their calculations, an
overshooting value of a,,., = 0.1 is adopted, where observations typically imply a
higher overshooting value (Castro et al. 2014} see Sec. [2.2.4)).

Groh et al. (2014) analyse a non rotating 600 model out of this grid in more
detail, such that we can use this model as a reasonable reference point. A huge
mass loss originates from crossing the second bi-stability jump at 7¢;r ~ 15 kK at
the end of the main sequence. The mass loss increases by a factor of 10.

In addition, all of their published evolutionary trackP|are based on a temperature
definition corrected for the optical depth of the wind, as stated by Groh et al.
(2014). The track is shifted towards lower temperatures, especially for the later

phases. Thus we can only reproduce general trends for these later phases.

Results

The main sequence evolution has been discussed by Ferraro (2020). We can see
that the main sequence for our non rotating models, shown in Fig. [3.4] is very
similar to that of the Ekstrom et al. (2012) models. Also the hook is at a similar
position.

The evolution after the hook seems to be similar for smaller masses. The bump
after the hook is too small to be observed. Its origin might be related to slight
differences in the treatment of the convective boundary.

For higher initial masses, the differences get bigger. The stars calculated using
GENEC loose more mass than predicted by MESA. In order to get closer to the
solution, we have to include the second bi-stability jump with an increase in mass

loss by a factor of 10 when crossing the jump. The resulting tracks are presented

3All tracks are available at http://obswww.unige.ch/~mowlavi/evol/denseGrids/
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Figure 3.4: Comparison between non-rotating models calculated by Ekstrom et
al. (2012) (dashed) and similar MESA calculations (solid). The initial mass is
indicated at each track. Huge differences, especially for the 60M model, can be
seen.

in Fig. 3.5 For the 60M; model the mass loss is still too low. While our model
ends as RSG, the model calculated by Ekstrom et al. continues to the blue and
ends its life as WR star.

As already discussed, for the GENEC models a very high mass loss occurs
when crossing the second bi-stability jump on the main sequence. However, the
main sequence for our model does not reach the corresponding temperature of
log Tepr = 4.2 (Teyy =~ 15 kK).

A longer extent of the main sequence was observed for models set up and
calculated by Ferraro (2020), such that we should be able to reproduce this
feature in MESA. Two parameters can account for that difference. The first is
Pextra factor, which was 2 in our models. A value of 1 can prolong the main
sequence by AlogT,s; ~ 0.1 as discussed in Sec. , which is, however, not
sufficient. The timestep setting based on the error in energy conservation made
by the solvelﬂ has an even larger impact. This purely numerical parameter had
been set for our calculations, whereas it was not set by Ferraro (2020)).

Removing it from our settings, we can get close to the solution found by Ekstrom

et al. (2012) for non-rotating models, as shown in Fig.|3.6 For the major part of

AMESA parameter 1imit_for_rel_error_in_energy_conservation. In our calculation, it
has been set to 10~
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Figure 3.5: As Fig. but with the second bi-stability jump included. Especially
the 60Ms model is still different.
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Figure 3.6: As Fig. but with timestep setting relaxed. This way, the MS of
the 60M; model has a longer extent and crosses the second bi-stability jump.
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Figure 3.7: Comparison between the timestep (black curves) on the MS of our non-
rotating 60M; model with the timestep constraint described in the text (solid),
and without it (dashed). As a reference point, the MS track is shown (red curves).
Depending on the timestep setting, there can be a huge difference in the actual
timesteps used for the calculation.

the MS, the timestep is limited by this setting, as can be inferred from Fig. [3.7]
and is up to one order of magnitude lower. This leads to a separation of the MS
which grows linearly. The difference finally results in a different position of the
hook. For the hook itself, the timestep is similar in both cases, indicating that
it is not influenced directly by this timestep, but rather by the different starting
point.

In general, we would expect that tighter timestep constraints result in a higher
precision. At least for this comparison though, relaxing this condition seems to be
the better choice (nevertheless it is not clear which is the more physical solution).

We can summarise, that the behaviour of the 60M; model is highly parameter
dependent. In addition, the second bi-stability jump on the main sequence is
most likely not physical, at least with respect to its position, and the enormous
increase of mass loss rate (see Sec.[2.6.1)). In this case Ekstrom et al. (2012) would
overestimate the total mass being lost by a factor of ~ 2.

For rotating models the transport of angular momentum by the Eddington-
Sweet-circulations plays a major role. It can change the rotational structure, and
thus can affect indirectly also the transport of elements by rotational instabilities.

As the treatment is different for the two codes, we can see huge differences
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Figure 3.8: Comparison between models calculated by Ekstrom et al. (2012)
(dashed) and similar MESA calculations (solid), rotating with w = 0.4we. The
initial mass is indicated at each track. Already the MS evolution shows huge
differences.

in Fig. B.8] Already the main sequence evolution is different for our models,
as discussed by Keszthelyi (2015). Ferraro (2020) showed that increasing the
efficiency by a factor of 10 allows to reproduce the post-main sequence. However,
he increased the efficiency both for angular momentum, and chemical transport.
In his calculation, the main sequence is different in all cases, indicating that
differences between advective and diffusive angular momentum transport can not
be expressed in a simple scaling factor. This is consistent with the result of Groh
et al. (2019), who also attribute the differences of rotating models in GENEC and

MESA in terms of meridional circulations.

3.4.2 Comparison with Brott et al. (2011)
Physics

This grid of stellar models has been calculated with the STERN code. The
calculation covers the main sequence evolution and central helium burning.

The treatment of the physical processes is very similar to the descriptions used
by MESA. Especially, both mixing and angular momentum transport are treated

as diffusive processes.
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Figure 3.9: Comparison between non-rotating models calculated by Brott
et al. (2011) (dashed) and similar MESA calculations ( ). The initial
mass is indicated at each track. Two different setups are compared,
one with our default parameters (left), and one with the timestep setting
limit _for rel error_in energy conservation deactivated (right). Differences
between the models are small. However, the hook of the 60/ model is highly
parameter dependent.

The parameters can be found in Brott et al. (2011). As the mass loss rates
are calculated based on the iron abundances, we have to set the metallicity used
for opacity calculations, ZbaseEL to 0.014 while setting Z = 0.0088. We apply the
Dutch mass loss scheme. However, Brott et al. include a change from the de Jager,
Nieuwenhuijzen, and van der Hucht (1988) rates to the rates by Nieuwenhuijzen
and de Jager (1990)) if the latter are higher. They argue that this naturally includes
the second bi-stability jump at T.rr ~ 12.5 kK.

Results

Comparing the main sequence of non-rotating models shown in Fig.[3.9] we see an
overall excellent agreement. For lower masses, changes are below what would be
measurable. For the higher masses, we again observe a shift in the position of the
hook. As in the comparison to the results of Ekstrom et al. (2012) in Sec. [3.4.1]
this disagreement can be reduced by changing the timestep settings. The position
of this hook for high masses is again highly parameter dependent!

The post-MS evolution shows further differences, which might be related to the
different treatment of mass loss. At first, Brott et al. use the iron abundances for
wind scaling, while we use the total metallicity. The correction by setting Zbase

can not fully compensate for the differences. In addition, Brott et al. include a

5This parameter is used for opacity calculations only until the metallicity Z exceeds this
value.
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Figure 3.10: Comparison between rotating models calculated by Brott et al. (2011))
(dashed) and similar MESA calculations ( ) with v;,;: = 300km/s. The initial
mass is indicated at each track. As expected, the differences are similar to the
non-rotating models.

description of the second bi-stability jump. As argued in the previous section, this
most likely overestimates the mass loss.

The rotating models presented in Fig.[3.10|do not show other differences than the
non-rotating ones, which is to be expected, since the treatment of rotation and the
rotational instabilities in the STERN code is very similar to the implementation

in MESA.

3.4.3 Comparison between evolutionary tracks of Brott et
al. (2011) and Ekstrom et al. (2012)

There are significant differences between the tracks calculated by Brott et al.
(2011)) with the STERN code and Ekstrom et al. (2012) with GENEC. The tracks
calculated by Brott et al. mostly look simpler than the ones by Ekstrom et al., as
they have less blue loops. The differences can be attributed to four main reasons.

At first, Brott et al. utilise the Ledoux criterion for calculations of the convective
boundary, while Ekstrom et al. apply the Schwarzschild criterion. This leads to
a p-barrier for the Brott et al. models, which thus have a lower luminosity. In
addition, the treatment of angular momentum transport by meridional circulations

is different, as described in the previous sections. The evolution of the surface
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rotational velocity is drastically influenced by the presence of magnetic fields,
which are only used in the models calculated by Brott et al. Finally, the
overshooting value is drastically different.

An enlightening summary of the differences between stellar evolution codes has
been provided by Keszthelyi (2015)).

3.5 Remnant Linking

Our calculations include the evolution from the ZAMS up to central carbon-
exhaustion. From then on, the timescales are very short, the internal structure
and especially the helium- and carbon-core masses do not change. Thus, the final
model of our calculation is sufficient to make predictions for the final remnant.
We assume the remnant properties are purely based on the final helium and
carbon core masses My, and Mo as well as the final mass M before the explosion.
The explosion type is mainly based on the mass of the hydrogen-envelope My. In
the following we will give a short overview about explosion and remnant types.
Finally, we will provide the two formalisms used to link the final structure to a

remnant mass.

3.5.1 Explosion Types

Massive stars end their life with a supernova (SN) explosion. The SN is
characterised by its spectral appearance. Especially, the H and He lines are
important, as these elements are lost at first by stellar winds. If hydrogen lines
are present in the spectrum, we define the SN as type II. If no H is present, the
star explodes as type I SN.

Depending on the spectral evolution and exact shape of the spectrum, further
distinctions can be made. We use the limits presented in table [3.1] taken from
Heger et al. (2003)). Further information about SN classification can be found in
the book by Maeder (2009).

For very massive stars, there exist other types of SNe, such as the so-called
pair instability SN (PISN). As we only calculate models up to M; = 60M, they
are not important for our work. Other possible mechanisms that lead to a SN

explosion can occur in binary systems that host at least one white dwarf (SN

type Ia).
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My /Mg ‘ SN type

> 2 ITP
<2 | IIL/b
0 Ib/c

Table 3.1: Supernova type depending on the mass of the hydrogen-rich envelope
My, following Heger et al. (2003)).

3.5.2 Remnant Types

While low and intermediate mass stars end their life as white dwarfs (WDs),
electron degeneracy is not sufficient to stabilise the remnant produced by high
mass stars. The upper mass limit for WDs is known as Chandrasekhar mass as
it was first derived by Chandrasekhar (1931). If the mass (of a massive star)
is not too high, neutron degeneracy can stabilise the object and a neutron-stars
(NS) forms. If the mass is even higher, a black hole (BH) is produced. This
can contain either only a part of the progenitor mass (fallback BH), or the total
mass of it (direct BH), if the iron core mass is sufficiently high. While there is no
theoretical upper mass limit for their stability, stellar evolution calculations (for
single stars) predict an upper mass limit for black holes of O (50) M, at least at
solar metallicity (Heger et al. 2003, Belczynski et al. 2010, Spera, Mapelli, and
Bressan [2015)). Very massive stars in a certain mass range end their life with a
pair-instability SN, disrupt completely, and thus leave no remnant behind.

The exact limiting masses are still under discussion and may depend on the final
rotation rates (Chamel et al. 2013, Rezzolla, Most, and Weih 2018)). However,
the uncertainty is negligible for our simulations. In our work we use the limits
described by Belczynski et al. (2008) to distinguish between different remnants.

Remnants with masses lower than M,.,, = 1.4M form white dwarfs. For masses
in the range 1.4...2.5M, the remnant collapses into a neutron star. Even higher
masses lead to black holes.

As discussed already, these remnant masses can be calculated from the final
mass and the core masses. In the following, we describe the different options, how

to link the progenitor-properties to the final remnant mass.

3.5.3 Woosley-Formalism

The first scheme is based on the work by Woosley, Heger, and Weaver (2002).

They state that the remnant properties depend solely on the final helium-core
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Figure 3.11: Helium-core to remnant-mass relation obtained from Woosley, Heger,
and Weaver (2002)). We differentiate as follows: zero-metallicity (solid) and
solar metallicity, where we further differentiate between RSGs ( ) and WR
stars within the high mass loss scenario (dashed-dotted) and the low mass loss
scenario (dotted). Additional data-points from Woosley, Langer, and Weaver
(1995) (asterisks) and Woosley (2019) (x-symbols) are shown.

mass.

We use Figs. 12 and 16 from Woosley, Heger, and Weaver (2002) to read out
the data, and find the helium-core to final mass relation shown in Fig. [3.11} There
are different relations depending on metallicity and the internal structure.

The green curve follows the relation for stars at solar metallicity which end
their life as supergiants. For stars that end their life as WR stars, the red and
blue lines need to be considered. These are the two different scenarios described
by Woosley, Heger, and Weaver (2002), depending on the assumptions for Wolf-
Rayet mass loss rates. The higher mass loss scenario (red) provides data for lower
helium core masses than the scenario assuming lower mass loss rates. Nevertheless,
in the range of helium core masses where both relations can be used they coincide
very well. For all Wolf-Rayet stars that lost their hydrogen-rich envelope, we use
the mean value of the two relations for all helium core masses where both can
be applied, and only the relation provided by the high mass loss rate scenario
otherwise. The difference to the relation for RSGs can be explained by changes of
the internal structure by mass loss.

As the evolution of stars with LMC abundances is more similar to those with
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MW abundances compared to the zero metallicity case, we use these relations for
both metallicities.

The black curve is valid for zero metallicity] The difference to the solar
metallicity environment can be explained by strong differences in the internal
structure as no mass loss is present, and by the fact that stars at lower metallicity
are more compact. Another explanation could be the lack of catalysts (at least in
the early phases of evolution).

Woosley, Langer, and Weaver (1995) and Woosley (2019) calculated more
detailed explosion models, shown as asterisks in this plot. They overlap very
well with the relations we found from Woosley, Heger, and Weaver (2002)). The
highest mass model of Woosley (2019) has a very low remnant mass which can
be explained by complete disruption due to a PISN. However, none of our models
reached such a high helium core mass.

As we use, regarding specific aspects, somewhat different physics for the
evolution, stars might have higher He core masses than the maximum masses
presented by Woosley, Heger, and Weaver (2002)). In this case we assume that the

whole helium core mass is included in the remnant.

3.5.4 Belczynski-Formalism

As already Woosley, Heger, and Weaver (2002) argue, the carbon core should be
an even better indicator of the remnant properties than the helium core mass. A
linking-scheme based on the carbon core mass is described by Belczynski et al.
(2008)).

To find the remnant mass one has to follow two steps. The first is to find the
iron core mass. In general, one could continue the stellar evolution calculation to
a state just before core collapse to obtain it directly. Nevertheless, as the final
timescales get very short, and thus the time needed for the calculations would
increase drastically, we use the simple idea described by Belczynski et al. (2008),
who performed fits for models calculated by Timmes, Woosley, and Weaver ((1996)).

6Woosley, Heger, and Weaver (2002) assume that zero metallicity models evolve without mass
loss.
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The iron core mass can be calculated via

(

PP EARRIE 4.82My < Meo < 6.31M, 51)
FeNi — .

0.69Mco — 2.26M;  6.31Mg < Meo < 6.75Mg

\OB?MCO —0.07Ms 6.75Ms < Meo.

Even though this description was obtained for solar metallicity, Belczynski et al.
argue that it can be used for a wide range of metallicities Z ~ 107%...0.3 and
even is a good approximation at zero metallicity. We use this scheme not only for
MW and LMC abundances but also for a very low metallicity Z = 107°.

Timmes, Woosley, and Weaver (1996) explain the jump from 1.5M to 2.11M,
by a differences in core C burning. While smaller mass stars have convective
energy transport during central carbon burning, the core becomes radiative for
higher mass stars as discussed in Sec. [3.2.2]

In a second step, we can calculate the baryonic remnant mass by using the iron

Ccore mass:
Mpeni Mco < 5Mg
Myem = Mpeni + 59255572 (My = Mpeni)  5Mo < Moo < T.6My - (3.2)
M, 7.6M, < Mco.

The pre-factor in the second case describes partial fallback. For higher masses we
have a direct collapse, and, as above, the full progenitor mass is included in the
final remnant.

The models calculated by Timmes, Woosley, and Weaver cover initial masses
M; = 10M,, ... 40Mg. As for higher masses the iron core mass increases further,
and the remnant mass is determined by the final mass, the formalism can be
extended to higher masses. The only upper mass limit is given by the mass where

a pair instability occurs, which we do not reach in our models.

3.5.5 Gravitational Mass

The mass given by the previous relations is the baryonic mass of the remnant. As
neutron stars and black holes are very compact, their gravitational remnant mass

is smaller.
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For micro-lensing observations (see Chpt. the gravitational mass, and not the
baryonic one is important. We use the relations provided by Belczynski et al.
(2008, their Eqn. 3 and 4).

For NSs the gravitational mass can be calculated via

My M M
Mrem rav — P — Mrem ar — . 3.3
& \/(2.0.075) T Mrember 075 T 270.075 (3:3)

For BHs a simple reduction by a factor of 0.9,

Mrem,gr(w :0'9M7"em,bm”a (34)

describes the conversion.
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4 Evolutionary Model Grids

4.1 Physical Parameters

Our grid of models consist of eight different masses ranging from 10M to 60M),
as well as different rotational velocities. We chose a tighter mass spacing for stars
10Ms < M < 30M in order to have a better resolution in logarithmic space and
as we expect many transitions between different remnant types to occur in this

region.

4.1.1 Standard Grid

Our standard grid includes the following values:
e Masses: M; /M = 10, 15, 20, 25, 30, 40, 50, 60,
e Rotational velocities: /... = 0,0.2,0.4.

As discussed in Sec. the best choice for the convective boundary criterion
is still under discussion. In order to study the uncertainties resulting from this
choice, we include both, the Ledoux and the Schwarzschild criterion, in our grid. If
the Ledoux criterion is employed for the calculations of the convective boundary,
we adopt semiconvection with age,; = 1.0. Overshooting above the convective
core is included with ay,.e, = 0.335 for all central burning phases.

Rotational mixing is implemented with an efficiency ay,;,, = 1/30, and effects
of the composition gradient are reduced by f, = 0.05. Out of the instabilities
described in section [2.4.2] we include the secular shear instability, the Solberg-
Hoiland instability, Eddington-Sweet circulations, and the Goldreich-Schubert-
Fricke instability. Effects of the viscosity as well as dynamical shear are neglected.

As not all massive stars host magnetic fields, and as the implementation is
highly uncertain, we include models with and without a Spruit-Tayler dynamo

being active.
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Mass loss is implemented following Sec. in the Dutch scheme.

4.1.2 Additional Grids

For most of the above parameters, in particular the mass loss rates, the
corresponding values are still under debate. In order to study their influence
and the uncertainties originating from them, we calculate different grids where
these parameters are varied.

We assign the following numbers to these grids:
1. Standard grid.
2. Increased core overshooting following Castro et al. (2014), apper = 0.5.

3. Wind corrected towards a probably more realistic description, in several
steps. Position of the bi-stability jump T¢f jump and corrected wind scaling:

(
(

a) total mass loss scaled down by factor O.Zﬂ Testiump = 25 kK

b) total mass loss scaled down by factor 0.4, T,¢f jump = 20 kK

)
)

(c) only Vink mass loss scaled down by O.4E], Tetfjump = 20 kK
)

(d) as before, but including metallicity scaling for de Jager mass loss rates

(late type supergiants)

4. Mixing coefficients f., f, varied drastically according to Keszthelyi et al.
(2020, in prep.). The changes are more important, when the mixing efficiency
is increased, as it favours quasi chemically homogeneous evolution for more
models. Thus, we increased f, by a factor of 10, and decreased f, by a factor
of 5.

4.1.3 Abundances

Our analysis includes calculations in three different environments. In order
to reproduce other grids, and because of rich observational data, calculations
with Milky Way (MW) and Large Magellanic Cloud (LMC) abundances are

performed. In addition, grids at very low metallicity Z = 107° (lowZ) are

IMESA parameter Dutch_scaling factor
2MESA parameter Vink_scaling_factor. By default, this is not used when the Dutch scheme
is applied. However, we made this setting accessible in our run_star_extras.f (see App. j
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evaluated. All metallicities Z including the initial Helium abundances Y are
summarised in table 1]

The initial abundances of individual elements vary depending on the
environment. For MW metallicity, we use the values provided by Asplund et al.
(2009), and corrected by Nieva and Przybilla (2012) and Przybilla et al. (2013). At
lowZ, the exact abundances play a minor role, as they are very small in any case.
We apply the same composition as for MW metallicity, scaled down according to
the metallicity difference. For the LMC we follow the approach of Brott et al.
(2011): The Asplund, Grevesse, and Sauval (2005) abundances are reduced by
0.4 dex except for C, N, O, Mg, Si, and Fe where we use the values from Brott
et al. (2011)), their table 1.

X Y A
MW | 0715  0.271 0.014
LMC | 0.7391 0.2562 0.0047
lowZ | 0.75229 0.2477 1075

Table 4.1: Initial hydrogen abundances, helium abundances, and metallicities of
our models. For references, see text.

4.2 Numerical Parameters

Some critical parameters have already been discussed in Sec. 3.3} The full set of
numerical parameters can be found in our inlist{’| attached in Sec. [A.4

However, we sometimes changed these settings, when models ran into timestep
issues with the default parameters. A major problem were density inversions, as
described in Sec. [2.2.5, We tried varying different parameters, where the following
was the best compromise between a physical choice of the parameters and avoiding
problems. As a first step, the timestep settings that force a better resolution of the
burning phase were relaxed. This often helped, as the calculation just “jumped”
over the problematic moment (compare also Sec. [3.4.1)).

If the calculation still reached very small timesteps, we changed the MLT option
to the scheme described by Bohm-Vitense (1958) or adjusted the MLT++ options.
Both could help to increase the convective efficiency in the envelope and thus also

avoid the density inversion.

3The inlists are the files containing the data necessary for a MESA run. Physical and
numerical parameters can be varied, as already described.
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Different checks clarified that these changes do not alter the results drastically,

the differences are much smaller than differences between the grids.

4.3 Technical Aspects

Our basic grid consists of 96 models, as described in the previous section. In the
following, we provide a short overview about typical run-times, and the memory
usage. The exact numbers depend on the exact timestep and grid settings, as well

as on the assumptions about the physics of the model.

4.3.1 Runtime

MESA is designed to make efficient use of a multi-core architecture. At first, it
is programmed in a thread save way, such that it can use parallelisation inside a
single run. On our machine, we used 16 threadf], which we found as an optimum
number, as discussed in App.[A.6l A single program takes an average wall-clock
runtime of ~ 50 min to calculate from the pre-MS until carbon exhaustion.

In addition to executing a single run with multiple threads, several instances of
MESA can be run in parallel. Our machine had a total of 160 CPUs available.
We had to keep the maximum number of threads below this number, as virtual
threading drastically slows down the run. In order to keep some threads free for
our analysis, we executed a maximum of nine models in parallel. As our program
execution is split into different parts depending on the evolutionary phase, and
rotation is only set from the ZAMS on, we can reduce the number of pre-MS
models that has to be calculated. However, these calculations only make up a
small fraction of the runtime. It took O (10) hours for the calculation of a single
grid to finish.

4.3.2 RAM Usage

In addition to the CPUs, the number of models that can be calculated in parallel is
limited by the available RAM. A single run requires < 7 GB. If the available RAM
is exceeded, MESA can run into timestep problems, and the program terminates.
As we had 200 GB of RAM available, this was not a problem for us. However, for

earlier tries on other machines this was a limiting factor.

4Linux bash variable OMP_NUM_THREADS
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4.3.3 Final Storage

Besides the MESA program, that already occupies 36 GBEL there is also the
memory space for our mesa program and the inlists, which is only 54 MB. Also the
output of the run has to be saved. The default way, how this is done in MESA,
is to save the output into a history file for core and surface data, and profile files,
which contain data at a single timestep along the radial coordinate. We chose
to save the core and surface data at every timestepﬂ and a profile every tenth
step|Z|. These data occupy ~ 1.5...2 GB for a single model. In order to analyse
the data, we read them into IDLF| binary files, which have an average size of only
~ 200...300 MB. To reduce the necessary space even further, we saved the most

important core and surface data, as well as a final profile, into an ASCII file of

only O (1) MB.

5Split into 1.8 GB for the MESAsdk, and 34 GB for the main program.

SMESA parameter history_interval set to 1

TMESA parameter profile_interval set to 10

8Interactive Data Language (IDL) is a programming language, used mainly for data analysis.
We used it to analyse the output. How we analyse the data is described further in App. @
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5 Evolutionary Tracks and Core

Masses

In the following, we analyse the outcome of our stellar evolution calculations. As
the core and final masses are most relevant to link from the progenitor to the
remnant, we will focus on their analysis. In addition, a deeper understanding
can be gained from analysing the evolutionary tracks in the Hertzsprung-Russel
diagram. These can also be used to compare our results to observations of RSGs,
which are a reliable tracer of the quality of the models. Subsequently, we study
the systematic effects of rotation, magnetic fields, and the choice of the convective
boundary criterion.

The HRDs comparing all models from our calculations are shown in Figs. [5.12]
to[5.14] Enlarged versions of our plots for the standard grids are shown in Figs.

to [5.3] The core and final masses are compared more quantitatively in Figs. [5.4

and 0.5l

5.1 Position of RSGs

As explained already in Sec. [3.2.2] stars with smaller masses tend to explode as
RSGs. There exist various observations of RSGs at different metallicities. A large
survey has been carried out by P. Massey in various publications. We compare the
RSGs from Massey and Olsen (2003) at LMC abundances to our corresponding
calculations. In addition, we compare with observations by Levesque et al. (2005))
of RSGs at MW metallicity.

RSGs are located at a metallicity dependent, and approximately constant
effective temperature, as they evolve along the Hayashi line. Indeed, in Figs. [5.1],
and we can see that this is true both for the observed RSGs, and for
our calculations. In addition, we find an overall excellent agreement at LMC

metallicity, while at MW abundances, we note a small difference, potentially
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Figure 5.1: Hertzsprung-Russel diagrams of all models with MW metallicity in
the standard grid. Different colors indicate a combination of rotation rates, and
if the Spruit-Tayler dynamo (ST) is applied or not. The H surface abundances,

and the convective boundary criterion are indicated by the choice of the linestyle.
Q/Qeris ‘ ST on off H H surface abundance ‘ Ledoux Schwarzschild

0 black > 60% solid long dashed
0.2 red 10% — 60% dashed dashed dotted
0.4 blue < 10% dashed dotdot dotted

RSGs from the MW (Levesque et al. 2005)) are indicated as red circles. See text
for further discussion.

related to the metallicity. Levesque et al. (2005) find an excellent agreement with
the tracks calculated by Meynet and Maeder (2003)), where they adopt Z, = 0.02].
In contrast, we assume Z, = 0.014, and thus observe a shift of the RSGs to lower
effective temperatures, consistent with the findings by Levesque et al. (2006)).
Also for higher masses, M; > 25M,, there are some differences, mainly
noticeable for LMC metallicity. These models do not reach the corresponding
temperature, but evolve back to the blue already at higher effective temperatures
and become BSGs or WR stars. Massey and Olsen (2003) suggest that this

!'Even though this value seems to be correct for the sample of RSGs observed by Levesque
et al. (2005)), the solar metallicity is most likely smaller.
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Figure 5.2: As Fig. but for LMC metallicity. RSGs from the LMC (Massey
and Olsen [2003) are indicated as red circles.

difference might be reduced by decreasing the mass loss. We could not verify
this from our tests; the tracks calculated assuming an overall reduced mass loss

and corrected jump temperature (grid 3b), decreasing the mass loss even further,

did not show a strong effect (compare Figs. |5.12d| and |5.13d]). However, there

is only a small number of such stars at higher luminosity, and a more detailed
analysis of them, similar to the work of Massey and Evans (2016), could reveal an

explanation.

5.2 Systematic Effects

Already within a single grid we include uncertainties about the convective
boundary criterion, magnetic fields, and different rotational velocities. In the
following, we want to discuss the systematic effects of these parameters. In
Figs, and [5.5], we show the differences in final masses, AMy, and core masses,
AMpy, and AMco, for these three parameters.
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Figure 5.3: As Fig. , but for lowZ.

5.2.1 Rotation and Magnetic Fields

Rotation can lead to two opposite effects on the MS concerning the luminosity
(Brott et al.|2011). Typically, it is assumed that rotation increases the luminosity
by more efficient mixing, and thus increased core masses. For our models, this
only occurs for some of the highest mass stars considered, in combination with
strong rotation, and especially for grids where mixing is increased, either directly
by an increase in overshooting or rotational mixing efficiency (grids 2 and 4), or
indirectly by applying reduced mass loss rates (grids 3a-3c/d) and thus higher
rotational velocities. At lower metallicity, the increase in luminosity is much more
prominent, as the rotation rates are in general higher.

We can see an increase in surface abundances for all rotating models. In Fig.|5.6|
we compare the surface nitrogen enrichment in our calculations to those of Brott
et al. (2011). Non-rotating models do not mix any processed material to the
surface on the MS, while rotating models can show drastic changes in the surface
abundances. Our calculations are consistent with the results of Brott et al., both

concerning the timescales, and the number fractions. Small differences can be
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Figure 5.4: Differences in core masses ( , Mco) and final mass, My, resulting
from different descriptions of specific processes. Models of the standard grids with
MW and LMC abundances are shown on the left and right, respectively.
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Figure 5.6: Comparison of the surface nitrogen enrichment of the models calculated
by Brott et al. (2011)), (left), and our models (right). Models at MW (black), and
LMC metallicity (blue) are shown. Non-rotating models (solid) do not show any
surface enrichment on the MS, while the surface nitrogen abundance increases
for rotating models (dashed), where the initial rotational velocities are v, =
270km/s for Brott et al., and Q = 0.49Q,,.; for our calculations. Our results and
the calculations by Brott et al. agree in an order of magnitude comparison, both
concerning number fractions and timescales.

explained by slightly different rotation rates and other minor differences in the
models, similar to what has been discussed in Sec. A more detailed analysis
of the surface abundances on the MS is beyond the scope of this thesis.

In contrast to the changes in surface abundances, rotation decreases the
luminosity for most of our models. This is the second of the two opposite effects
mentioned above. This decrease is related to the reduced effective gravity (because
of rotation), which leads to a reduced effective mass coordinate for the whole star.
The reduction is by a constant factor for solid body rotation (with Spruit-Tayler
dynamo), and even stronger for inner regions without the Spruit-Tayler dynamo,
as rotation rates increase towards inner regions, as shown in Fig.|5.8] The effective
mass enters partly in the derivation of the relation L ~ M®, such that a decrease
also affects the luminosity. This effect is more pronounced for lower rotation rates,
where mixing plays a lesser role.

In all cases, however, the MS becomes extended, as more material is available
to be burnt.

All rotational effects become more important for lower metallicity, but overall
affect the evolutionary tracks weakly. An exception are models that evolve quasi
chemically-homogeneously, which we will discuss later in more detail. However,
this might change if advective angular momentum transport is included, as argued
in Sec. [3.4.1] The main effect in our calculations are the changes in the surface

abundances. The low importance of rotation, and also the dominance of the effect
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Figure 5.7: Comparison of the evolution of the angular velocity of a 40M, model
at MW metallicity with (dashed) and without (solid) magnetic fields in the Spruit-
Tayler description. If magnetic fields are active, the star keeps a higher rotation
rate. In general, the rotation slows down already on the MS.
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Figure 5.8: Comparison of the internal run of rotation with (dashed) and without
(solid) magnetic fields for a 40M model with MW metallicity.

decreasing the luminosity, can be explained by the slowdown already on the MS,
which is shown in Fig.[5.7 At MW and LMC metallicity, it occurs even faster for
higher initial masses as the mass loss rates are higher. Only for lower metallicities
or reduced mass loss rates, the star can keep the rotation rates sufficiently high.

The general effect of rotation on the progenitor properties is to increase the core
masses while the final mass is decreased, as one can see from Figs. and [5.5b]
The increase in core masses can be explained by more efficient mixing through the
radiative envelope by the different rotational instabilities. Higher core masses and
higher rotation rates both favour higher mass loss rates, thus reducing the final
mass. However, the effect is very small at MW and LMC metallicity, and can be
seen clearly only at lowZ.

Internal magnetic fields can enforce solid body rotation, as shown in Fig. 5.8
As less angular momentum is redistributed to the core, this keeps the surface
rotation rates on the MS higher, as can be seen for the dotted line in Fig. [5.7]
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Thus, magnetic fields can increase the effects of rotation, and lead to increased
core masses, and reduced final masses. As expected, the higher the rotation, the

larger this effect.

5.2.2 Convective Boundary Criterion

From the HRDs in Figs. to [5.3] we can see that the choice of the convective
boundary criterion does not change the MS evolution, as already discussed in
Sec. [3.3.1] However, it can affect the post main sequence evolution drastically.

Models that are calculated using the Schwarzschild criterion are brighter on the
post main sequence as can be seen for the 15...30M; models of the default grid
at MW metallicity in Fig. [5.1} Models using the Ledoux criterion, on the other
hand, are fainter, at least for MW and LMC metallicities. Even though, they more
likely end their life in the blue, and also for lowZ experience higher mass loss. The
initial mass limit for the formation of WR stars is shifted to lower masses, as can
be seen for the 30M model at MW metallicity in Fig. [5.1}

Indeed, for LMC as well as MW metallicity, the most important uncertainty
comes from the treatment of the convective boundary criterion, as can be inferred
from Fig. 5.4

To understand the origin of this difference, we take a more detailed look on
the structure of these two models, shown in Fig. 5.9 Already during shell
hydrogen burning, the shell-convection drastically changes the structure in the
outer envelope. The two models separate after the hook, when core helium
burning sets in. For the model calculated using the Ledoux criterion, the envelope
convectionﬂ during central helium burning reaches deep stellar layers, resulting
in a dredge up, consistent with the results of Kaiser et al. (2020), and brings up
processed material to the surface. In contrast, envelope convection is restricted to
a surface layer for the Schwarzschild case.

Nevertheless, the helium core mass is higher when central helium burning sets
in for the model calculated using the Schwarzschild criterion, thus resulting in a
higher luminosity.

In general, a higher luminosity should lead to a higher mass loss, and thus lower
final masses. However, in this case the mass loss in late RSG phases is of great
importance. This can be seen best for the models at lowZ. In contrast to higher

metallicities, where a noticeable increase of mass loss occurs when crossing the

2The existence of envelope convection during these later phases was discussed in Sec.
The main reason are changes of the opacity in the envelope.
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Figure 5.9: Comparison of the evolution of a 25M, model at solar metallicity,
calculated with the Ledoux (left) and the Schwarzschild criterion (right).

bi-stability jump, at low metallicity, the rates provided by Vink, de Koter, and
Lamers are very small. The only rate that is independent of metallicity is the one
provided by de Jager, and thus determines almost all mass losﬂ Depending if we
use the Ledoux or the Schwarzschild criterion, the post MS evolution occurs on
different timescales, as can be seen for a 40M, in Fig.[5.10, The de Jager rates set
in at a different point in time, as can be seen from the HRD, and shown directly in
Fig. m The mass loss lasts for O (104) years when we use the Ledoux criterion,
whereas it lasts for O (105) years when the Schwarzschild criterion is applied. The

difference in the timescale of de Jager, Nieuwenhuijzen, and van der Hucht (1988)
mass loss can fully account for the difference in final mass of AM; ~ 10.

3However, as argued in Sec. it might be overestimated.
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Figure 5.10: Comparison-HRD of a 40M, non-rotating model at lowZ calculated
using the Ledoux criterion (solid) and the Schwarzschild criterion (dashed). The
Line is colored depending on the mass loss scheme: Vink, de Koter, and Lamers
to de Jager, Nieuwenhuijzen, and van der Hucht and the transition region. After
the main sequence we display symbols every 1000 yr.
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Figure 5.11: Comparison of the mass loss rates of the same 40M, at lowZ as in
Fig. 5.10, The model calculated using the Ledoux criterion (solid) spends much
more time in the RSG regime where the de Jager rates apply than the model
calculated using the Schwarzschild criterion (dashed).

We can do a more quantitative analysis of this difference using Figs. [5.4a]
and with the following result. Applying the Ledoux criterion reduces the
final mass drastically, while it increases the core masses. For models that end as
WR stars, also the helium core mass can be reduced, together with the total mass.

As rotational mixing is very efficient for stars at low metallicity, the difference
between the Ledoux and the Schwarzschild criterion becomes smaller for rotating

stars. Other effects become more important, such as mechanical mass loss in this
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case. As the ST dynamo keeps the rotation rates higher, this further decreases

the difference.

5.3 Specific Effects

Within the different grids, we study the influence of uncertainties in the
overshooting parameter, mass loss rates, and the rotational mixing efficiency. A
comparison of the evolutionary tracks of all grids is shown in Figs. to [5.14]
As the HRDs would become convoluted if also an increased mixing efficiency was
accounted for, we show the latter effect separately in Fig.[5.17 For all grids, we do
a more quantitative analysis similar to the systematic effects, shown in Figs. [5.15]
[.16] and [5.18]  We start with a brief comparison of the different metallicities,

before we continue with the effects mentioned above.

5.3.1 Metallicity

The most important effect of metallicity is the reduction of mass loss rates. This
leads to a shift of the initial masses required to form WR stars, towards higher
values. In the extreme case of lowZ, most of the models considered end their life
as RSGs. Only the higher mass stars with M; Z 50M; can evolve back to the
blue and become BSGs, but no WR stars are formed. As explained already, the
mass loss rates provided by de Jager, Nieuwenhuijzen, and van der Hucht (1988)
become more important, as they are the only ones not depending on metallicity.
The effect of a metallicity scaling will be discussed later in this section, together
with the other grids set up for “manipulating” the wind.

In addition, models at lower metallicity are more compact. This, in conjunction
with their lower mass loss rates (less loss of angular momentum), enables keeping
higher rotation rates, such that rotation becomes a more important parameter.
Another critical difference for lowZ is the lack of catalysts. These are necessary
for burning via the CNO cycle, such that models at this metallicity have a pp-chain

being active in their center (during the MS) instead.

5.3.2 Overshooting

From the HRDs in Figs. [5.120 to [5.14b] we can see that a higher overshooting

value causes the MS to be brighter and more extended. It further increases the
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Figure 5.12: Hertzsprung-Russel diagrams of all models with MW metallicity.
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Figure 5.13: As Fig. but for LMC metallicity. RSGs from the LMC (Massey
and Olsen 2003)) are indicated as red circles.
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Figure 5.15: Differences in core masses ( , Mco) and final masses, My, for

the grid with increased overshooting (grid 2) and the standard grid (grid 1) at
MW metallicity (upper left), LMC metallicity (upper right), and lowZ (lower).
We distinguish between models calculated using the Ledoux (triangles), and the
Schwarzschild criterion (squares). Larger overshooting increases the core masses,
while it decreases the final mass.

MS lifetime. During the later evolution, a higher value can also lead to an evolution
towards the blue, either to the BSG regime of even towards WR stars.

This can be explained by analysing the core and final masses, shown in Fig. [5.15|
As a direct effect, larger overshooting increases the core mass by ~ 1...3M at
MW metallicity, and up to AMco ~ 5My and AMy. ~ 8M at lowZ. This has
two indirect effects. At first, it increases the mass loss rates, and thus reduces
the final mass. And second, it reduces the envelope mass, as the core mass is
increased. In combination with increased mass, the reduced envelope mass makes
it much easier to remove the envelope, and explains the drastic shift of the WR
limit towards lower masses. While in our standard grid at MW metallicity, WR
stars form for M; = 30Mg, for increased overshooting, they form already for
M; =z 25M (compare Figs. [5.12al and [5.12b). For WR stars, the final mass

depends only very weakly on the parameters chosen and on the earlier evolutionary

history. This can be explained by the special behaviour of their mass loss rates,
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at least for Galactic metallicities. While Eqn. (2.93) predicts a dependence on
their luminosity, Schaerer and Maeder (1992) find that the luminosity is directly

connected to their mass via

log [% =3.4949 + 1.7267 log Mﬂ@ (5.1)
from fits to their models. In combination, the mass loss rate depends on the mass.
Thus, WR stars with initially higher mass loose more mass, such that the final
masses become independent of the earlier evolutionary history. We can see this
behaviour of the final mass for higher metallicities and higher initial masses. This
is similar to the result for helium stars calculated by Woosley, Heger, and Weaver
(2002)).

WRs also lost at least their hydrogen rich envelope, such that the helium core
mass and the final mass coincide. For most WR stars, they even become WC
stars, such that the same is true for the carbon core mass. In combination, this
causes the differences in core and final masses to become negligible, if the models
end as WR stars in both grids.

For lowZ, two models even show QCHE due to the efficient mixing. These stars
skip the RSG regime, and their final structure is very different from the other

models.

5.3.3 Mass loss

As already explained, we changed the mass loss prescription towards more realistic
values in several steps. In the following, we begin our discussion with a description
of the effects at MW and LMC metallicity, as at lowZ the whole mass loss originates
from the RSG phase alone, where the de Jager rates apply.

For grids 3a and 3b, where the total mass loss is reduced, the effects on the
evolutionary tracks are extreme. The limit, where WR stars form, is shifted
towards much higher initial masses, and almost all models end their life as RSGs.
Only very few 60M, models evolve back towards the blue. The final masses are
larger, as can be seen in Fig. [5.16] As less mass is lost, the core masses can become
larger as well.

The effect of the reduced jump temperature is much smaller. In general, this
decreases the mass loss rates even further, and thus amplifies the effect. An
exception are some 60M; models at MW metallicity, which evolve towards the

WR phase only in this case, while they ended as BSGs with unchanged jump
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Figure 5.16: As Fig. , but for the mass differences between grids with reduced
mass loss rates (grid 3a(triangles)/b(squares)/c(x-symbols)/d(plus-symbols, only
for LMC metallicity and lowZ)) and the standard grid. At MW and LMC
metallicity, reduced mass loss leads to higher remnant masses. At lowZ, the
situation is more complicated.

temperature (compare Figs. [5.12¢| and [5.12d)). This might be explained by the

second time they cross the bi-stability jump on the way back. However, the
difference is very small for these models.

When only the Vink mass loss is scaled down, the changes compared to the
standard grid are much smaller. Nevertheless, these models show the same
systematic increase in core and final masses.

As, together with the mass, also angular momentum is lost, reduced mass loss
rates can prevent the slowdown of rotation on the MS, not only at lowZ, but also
at LMC metallicity. These models show more pronounced effects of rotation, and
can even reach critical rotation and implicit mass loss.

At lowZ, the evolutionary tracks do not change significantly in all cases, as the
overall mass loss is very low. However, as argued already, the de Jager mass loss
rates play a major role. Especially for higher mass stars, the mass being lost in
the RSG regime allows them to move back towards the blue. If this is prevented

by including a metallicity scaling, they can evolve close to the Eddington limit,
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probably related to an LBV phase. The behaviour and especially the mass loss
during these phases are highly unknown. For our models, they end their life as
RSGs, with a total mass loss for the highest mass models of only AM < 1...3M.
However, there exist no constraints from observations or theory, whether such a
metallicity scaling should be included. This introduces the largest uncertainty at
lowZ, and can be seen best for the higher mass models.

The complex behaviour of the helium core masses at lowZ, displayed in
Fig.[5.16], and in general the decrease of specific helium core masses, also at other
metallicities, can be explained by slight differences in the envelope convection
during later phases. This is similar to the differences between the Ledoux and

Schwarzschild criterion, discussed in Sec. [5.2.2]

5.3.4 Mixing

As expected, an increased mixing efficiency makes QCHE much more likely. As
these tracks are very different compared to “classical” ones, and give rise to
complicate tracks in the HRD, we show the latter enlarged in Fig. Note
that the tracks of non-rotating models are unchanged from the default grid.

In contrast to the default grid, all rotating models show an increased luminosity
due to the efficient mixing. For most of the rapidly rotating models with
Q) = 0.4Q.,44, this even leads to quasi chemically homogeneous evolution. These
models evolve towards higher luminosities, at roughly constant radii. As the
surface abundances increase in parallel with the central ones, they eventually
become WR stars, without evolving through the RSG regime. Thus, even 10M
stars can form WRs, independent of the metallicity! As this is in contradiction to
observations, the real uncertainty, at least for lower masses, is most likely lower
than our extreme assumption.

Our evolutionary tracks are roughly consistent with the tracks presented by
Kohler et al. (2015). The latter have been calculated for rapidly rotating
very massive (M; > 60My) models at LMC metallicity and “normal” mixing
efficiencies. Thus, we can only compare the main features. Both show the
same luminosity and temperature evolution during most of their evolution. One
difference is that our models do not expand and evolve towards the red at any
point, while the models by Kohler et al. evolve to lower temperatures just before
they become WR stars. In our earlier models, however, we could see a similar

decrease in effective temperatures for a small fraction of their lifetime, depending
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Figure 5.17: Hertzsprung-Russel diagrams for all models with increased rotational
mixing efficiency, at different metallicities. Colors and linestyles indicate different
parameters, as in Fig. . See text for further discussion.
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Figure 5.18: As Fig. |5.15] but for differences between increased rotational mixing
efficiency (grid 4), and the standard grid. Models evolving quasi chemically
homogeneously show a very different behaviour.

on the exact settings that decide how to deal with critical rotation (especially the
wind setting).

Returning to our grids, a detailed comparison of the core and final masses, as
resulting from enhanced vs. standard mixing, is provided in Fig.[5.18 As a direct
effect, the efficient mixing increases the core masses. However, the lower initial
mass limit for WR stars can cause a reduction of core and final masses. As rotation
plays a major role at lower metallicity, this can be seen best for lowZ.

As for WR stars that formed the classical way, the final mass of WR stars
that formed via QCHE is independent of the previous evolution. However,
the final value is different compared to classical WRs. These models have
drastically decreased core and final masses, also for higher masses at MW and
LMC metallicity, where also in the standard grid WR stars form.

Thus, insecure mixing coefficients add a strong uncertainty, especially for lower
mass models, that would end their life as RSGs otherwise, and for lowZ, where

rotation rates remain higher.
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6 Remnant Analysis

6.1 Remnant Masses

In the following, we will analyse the remnant masses resulting from our
calculations. We use the two formalisms described in Secs. [3.5.3l and [3.5.4] to link

the progenitor properties the the remnant mass. Besides discussing the individual

effects, we compare our results with other calculations.

There are various studies with the intention of finding a relation between
remnant and initial stellar mass. We will focus on the calculations performed by
Heger and Woosley (2002)) and Woosley, Heger, and Weaver (2002)) who provide
relations for zero metallicityE] and for MW metallicity, respectively. In addition,
theoretical considerations by Renzini and Ciotti (1993)) are shown, which should
also hold for MW metallicity. Even though Renzini and Ciotti use a very simple
approximation, this function is used in several studies analysing microlensing
observations, including Riffeser, Seitz, and Bender (2008), and Thomas et al.
(2011]).

6.1.1 Remnant Masses at MW Metallicity

The resulting remnant masses at MW metallicity are shown in Fig. [6.1 It is
important to notice that the different formalisms provided by Woosley, Heger,
and Weaver (2002)) and Belczynski et al. (2008)) show a reasonable agreement in
most cases. Nevertheless, there is a noticeable difference for some masses in the
transition from NSs to direct BHs, i.e. for models with M; =~ 20...30M, at MW
abundance. There is an even bigger disagreement of remnant masses for the WR

stars that form for lower masses < 20M,,, which are a result of QCHE (red and

1 As discussed in Sec. zero metallicity means here a very low metallicity, where almost
no mass loss is present.
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Figure 6.1: Comparison of remnant masses from our calculations at MW
metallicity with other studies. Solid lines indicate calculations by Woosley,
Heger, and Weaver (2002) (MW metallicity) (two blue lines, differentiating the
adopted WR mass loss), and Renzini and Ciotti (1993)) (red). Different symbols
differentiate between different grids: grid 1 (plus-symbols), 2 (asterisks), 3a
(diamonds), 3b (triangles), 3¢ (squares), and 4 (stars). We show both, the remnant
masses calculated using the Woosley formalism (red symbols), and the Belczynski
formalism (blue symbols). Indicated by lines are also our current preferential
models with reduced Vink mass loss (grid 3c), mild rotation (2 = 0.2Q..;), both
with Ledoux (dashed) and Schwarzschild criterion (dashed dotted) applied, and
for ST turned on (dark color) and off (bright color). The grey line at the top
displays the one-to-one relation, and the lower one at M,.,, = 2.5M; marks the
limit between the formation of NSs and BHs. See text for further details.

blue stars at 10M, and 15M,)). As their final structure is very different from other
models, it is unclear which formalism would be the better choice.

The different grids as well as different physics introduce an uncertainty in
remnant masses. Especially, the grid with increased mixing coefficients shows
a different trend compared to all other grids. The remnant masses of WRs that
formed via QCHE is M,.,, = 10M, independent of the evolutionary history. This
is a consequence of the behaviour of core and final masses described in the previous
sections (see Sec. [5.3.4).

The other grids show the behaviour expected from the considerations in the
previous chapter. Reduced mass loss rates increase the remnant masses. The same
is true for increased overshooting at lower initial masses. For higher initial masses,

increased overshooting leads to the formation of WR stars, that are slightly lower
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Figure 6.2: Comparison of uncertainties in remnant masses at MW metallicity due
to rotation and mass loss. Symbols and colors as in Fig. [6.1] Only a selection of
models is displayed for clarity. For the standard grid, non rotating (solid line),
mildly rotating (2 = 0.2Q.;;, dashed line), and rapidly rotating (2 = 0.4Q¢i,
dashed dotted) models are shown. Only mildly rotating models are included within
the grids with reduced mass loss rates. The displayed models are calculated using
the Ledoux criterion, and with the Spruit-Tayler dynamo applied.

in mass, but lead to similar remnant masses as the other models that form WR
star via “classical” tracks, at around M,,, ~ 20...30M (compare Sec. .

As already argued, within a single grid the choice of the convective boundary
criterion adds an significant uncertainty, as can be seen from the dashed and
dotted lines, shown in Fig. [6.1 The ST dynamo only plays a weak role. Also
rotation only leads to a very small difference in the remnant mass, as shown in
Fig.[6.2] Reducing the Vink mass loss rates, differences are larger, and even more
extreme when the total mass loss rates are scaled down. Presumably, the reality is
somewhere in between, since also the WR mass loss rates might be overestimated,
as argued in Sec. 2.6

6.1.2 Comparison with Other Studies

Using Fig.[6.1, we can compare our results at MW metallicity with those from other
calculations. In almost all cases, we find higher remnant masses than Renzini and

Ciotti (1993). The only exception are the most massive WR stars, that agree
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Figure 6.3: Comparison of remnant masses with other studies for non-rotating
models with no overshooting at MW metallicity. The WR mass loss is increased
by a factor of 10. Solid lines indicate calculations by Woosley, Heger, and Weaver
(2002) (MW metallicity) (blue), and Renzini and Ciotti (1993) (red). Models
calculated using the Ledoux criterion are connected with a dashed line. The
displayed models are able to reproduce the results of Woosley, Heger, and Weaver
(2002) at a large extent.

quite well with the approximated BH masses predicted by Renzini and Ciotti, and
indeed, much better than with the other studies!

Compared to Woosley, Heger, and Weaver (2002), we find a shift of the lower
mass limit to form BHs towards lower initial masses. While we find a lower limit
of M; ~ 15, Woosley, Heger, and Weaver find that only stars with M; = 21M
form BHs. In addition, our WR masses are much higher.

There are two main reasons for these differences. The first is that Woosley,
Heger, and Weaver did not apply overshooting in their models. Even though
they argue it would be necessary to reproduce observationﬁ, our comparison (in
particular Fig. and corresponding text) suggests that they did not apply it in
their calculations. The second reason is that in their calculations, the applied WR
mass loss rates are not corrected for clumping, and thus too high, thus explaining
our larger WR masses.

In Fig. [6.3] we can see that increasing the WR mass loss and neglecting
overshooting, our calculations can get very close to the results provided by
Woosley, Heger, and Weaver. However, it seems that even in their low mass loss
scenario for WR stars, the mass loss is still higher than a factor of 10 compared

to the rates we use.

2Though carefully reading their publication, we could not find any definite statement
regarding whether they considered overshooting in their calculations or not.
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In summary, we conclude that using modern calculations and state-of-the-art
physical assumptions, our predictions for remnant masses are considerably larger
than those predicted by Woosley, Heger, and Weaver (2002), for a wide range of

initial masses.

6.1.3 Remnant Masses at Lower Metallicities

In Fig. [6.4, we compare the remnant masses at all metallicities considered
for our calculations. At lower metallicity, the average remnant mass becomes
increased. While the effect is small comparing LMC and MW metallicity, it is
more pronounced at lowZ.

The general systematic effects within the grids are very similar at LMC
metallicity when compared to MW metallicity models. From the lines indicated
for the current preferential model at lowZ, we can notice that the choice of
the convective boundary criterion plays a similar role as for other metallicities.
However, the Spruit-Tayler dynamo and thus also rotation may play a larger role
at lowZP’l Nevertheless, for most models the effect is still quite small.

A comparison of our remnant masses for lowZ with the calculations by Heger
and Woosley (2002)) for zero metallicity shows that our calculations coincide very
well if calculated using the Woosley formalism, which is also based on the data
provided by Heger and Woosley. Even though overshooting increases the core mass
for our models, the mass loss (tiny at earlier phases, but significant for RSGs) that
is only applied in our case has the opposite effect, explaining the agreement.

Moreover, there is a significant disagreement between the two formalisms at
lowZ! One difference occurs for the models with increased rotational mixing, that
end their life as WR stars. Woosley, Heger, and Weaver do not provide any
WR regime at very low metallicity, such that we had to use the same description
as for RSGs, not taking into account the different final structure. Also for the
other models (those with M; = 15...30M), there are essential differences in the
predicted remnant masses, by a factor up to 2 2.

As explained, our models have several differences to the models calculated by
Heger and Woosley, the most important ones being overshooting and mass loss.
Thus, our final structure is very different, and the agreement with their data might

just be a coincidence. As the mass loss at lowZ occurs during later stages, where

3Even though this is suggested by Fig. we cannot provide a definite conclusion, since
some 30M, and 40Ms models of grid 3¢ where we observe a discrepancy have been calculated
with slightly different settings (compare Sec. [4.2).
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also the CO core forms, the Belczynski formalism might be the more reasonable
choice. Nevertheless, a more detailed analysis of the late evolution up to the
iron core formation of stars at very low metallicity would be necessary to obtain
confidence in this hypothesis.

Concluding, the biggest uncertainty for lowZ results from the differences between
the Woosley and the Belczynski formalism! Only for smaller as well as much higher
masses, both formalisms predict NSs and direct BHs, respectively, and thus agree

again.

6.2 Remnant Types

In addition to analysing the remnant masses, we can explore the regions of
metallicities and initial masses, where we expect different remnant types to form.
In Fig. , the most popular result of Heger et al. (2003) is shown. The
corresponding smaller range of metallicities and initial masses covered by our grid
is indicated in this figure.

In the following, we only use the formalism based on Belczynski et al. (2008) for
calculating the remnant masses, unless explicitly stated otherwise. As discussed
in the previous chapter, for MW and LMC metallicity the choice of the linking
affects the remnant masses and thus also the types only weakly. For lowZ, further
analysis would be necessary to provide a valid linking formalism. Based on the
remnant mass, the remnant type can be found, after comparing with the limits
described in Sec. 3.5.21

Since we considered in our calculations the effects of various uncertainties, in
the resulting final diagrams displaying the remnant type as a function of initial
mass and metallicity we find overlap regions, where different kinds of remnants
might form. Such a diagram is provided in Fig. [6.6] The transition between the
metallicities indicated is a piecewise zeroth order interpolation. The same is true
for other masses than the ones for which we calculated models. We extend the
grid point to a box with boundaries in the middle between neighbouring models
(logarithmic space).

For all calculations, we observe a shift of the limits between different remnant
types towards lower masses. This can be explained by overshooting, that was only
included in our calculations, as explained in Sec.[6.1.2] Neutron stars can form for
masses < 15M,. Stars may become BHs with fallback for masses 15...20M, and

direct BHs for masses 2 20M,,. Thus, we find an overlap for masses around 15M,
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Fig. 1. from How Massive Single Stars End Their Life
Heger et al. 2003 ApJ 591 288 doi:10.1086/375341
http://dx.doi.org/10.1086/375341
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Figure 6.5: Figure from Heger et al. (2003), displaying the remnant types as a
function of metallicity and initial mass. The blue box indicates the region of
metallicities and initial masses corresponding to our calculations.
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Figure 6.6: A diagram similar to Heger et al. , Fig. 1. Remnant type
depending on metallicity and initial mass. Values for other metallicities than
indicated are only interpolations (see text). Mixed colors indicate overlap regions
for different remnant types, because of uncertainties in the current physical (and
numerical) description.
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that can form both NSs and fallback BHs, depending on the physical assumptions.
Models around 20M, may form fallback or direct BHs. Nevertheless, the overlap
region is comparatively small, and most models agree about the remnant type, even
if the evolution, as well as final and core masses are different! As our maximum
mass is 60M, we do not find any pair instability SN, which only occurs for helium
cores larger than 65M (Sec. |3.5.1))

In order to obtain a diagram with clearly distinct regions for the different
remnant types, similar to Heger and Woosley, in Fig. we display a diagram
using only our current preferential models. These models have been calculated
using the Ledoux criterion to define the convective boundary, mild rotation
(Q = 0.2Q..4, as indicated by Huang and Gies (2006]) from observations), and
magnetic fields in the Spruit-Tayler description. The mass loss rates of Vink, de
Koter, and Lamers (2001)) are reduced, and the bi-stability jump is corrected (our
grid 3c). For lowZ, we reduce the de Jager, Nieuwenhuijzen, and van der Hucht
(1988) mass loss rates, as described in Sec. Again, values for other metallicities
and initial masses than calculated are only zeroth order interpolations.

Consistent with Heger et al. (2003)), we find that the transition between different
remnant types is only weakly metallicity dependent. As Heger et al. argue, this
can be explained by the weak dependence of the final core mass on the mass loss
rates, that are the main difference between the metallicities. This dependence is
even smaller for the carbon core masses compared to the helium core masses.

As our mass loss rates are smaller, our calculations effectively correspond to
lower metallicities calculated by Heger and Woosley. In particular, our WR mass
loss rates are reduced drastically. In addition, only stars more massive than M; =
20...25M, form WR stars, which is higher than the limits between different
remnant types. Thus, we do not observe strong changes in the remnant type at
solar metallicity, in contrast to the results from Heger and Woosley. Instead, our
models become direct BHs in almost all cases.

The remnant masses increase at lower metallicity, as can be concluded from the
results presented in Chpt. [5

The situation is different when the Woosley-formalism is used to calculate the
remnant masses. While the remnant masses and types are only weakly affected at
MW and LMC metallicity, drastic changes are visible for lowZ. This is consistent
with our earlier findings concerning the differences between the two formalisms.
We find that the remnant mass is decreased compared to higher metallicities in

several cases! As stars at low metallicity do not loose their hydrogen rich envelope,
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Figure 6.7: As Fig. but only for our current preferential models (see text).
Numbers indicate the mass of the corresponding remnant, resulting from our
calculations. We provide the results both for the formalisms based on Woosley

(upper) and Belczynski (lower).

and their final mass is purely determined by the helium core, they never become
direct BHs. Instead, fallback BHs are formed.
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6.3 Explosion types

In addition to the the remnant types, a comparison of the different explosion
types can give a valuable basis for comparisons with observations. In Fig. we
show the results of Heger and Woosley (2002) for the explosion types, depending
on initial mass and metallicity. A similar diagram for our results is shown in
Fig. Again, this covers a smaller region, and there can be overlaps between
different explosion types, as explained in the previous section. In order to allow
for a clear distinction, we changed the colors, as shown in the corresponding
legend. All regions that are hatched may show no explosion, but a direct collapse
(corresponding to the white region in Fig. .

For lower masses, the stars typically still have a hydrogen-rich envelope when
they explode, such that they may explode as SNe type II. However, the rapidly
rotating models with increased rotational mixing efficiency evolved towards the
WR stage already for low initial masses, such that they explode as type I SN.
As explained already, this is most likely not physical, and the real uncertainty in
mixing coefficients is probably smaller. Thus, also the uncertainty in the explosion
type would be reduced. Higher mass stars at MW and LMC metallicity become
WRs, meaning they lost their hydrogen rich envelope. However, all stars more
massive than 25M, do not show any SN explosion but a collapse into a direct
black hole.

This becomes clearer, when only looking at the current preferential model, which
is shown in Fig.[6.10] Very similar to the original results of Heger and Woosley, we
find that all models at lower masses explode as type II SN. There is a thin band
of models that explode as type IIL/b, while the others explode as type IIp. As
this band is thin, we may just have missed the corresponding initial mass at solar
metallicity. The lower mass limit, where models have a direct collapse and thus no
SN, is shifted towards lower initial masses. In contrast to Heger and Woosley, we
find that for all metallicities, and especially also at MW metallicity, models with
M; 2 20M, have no SN, but a direct collapse. This is most likely related to the
differences in overshooting.

The explosion type is determined by the hydrogen-rich envelope, such that it is
independent of the calculated remnant mass. The only change we observe using the
Woosley-formalism instead of the Belczynski one is that at lowZ fallback BHs form,

such that we can observe explosions also at higher masses. As they experience only
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Fig. 2. from How Massive Single Stars End Their Life
Heger et al. 2003 ApJ 591 288 doi:10.1086/375341
http://dx.doi.org/10.1086/375341
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Figure 6.8: Figure from Heger et al. (2003), showing the explosion types as a
function of metallicity and initial mass. The blue box indicates the region of
metallicities and initial masses corresponding to our grid of evolutionary models.
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Figure 6.9: A diagram similar to Heger et al. , Fig. 2. Remnant type
depending on metallicity and initial mass. Values for other metallicities than
indicated are only interpolations. Mixed colors indicate overlap between different
explosion types because of uncertainties in the current physical (and numerical)
description. The low mass models exploding as type I SN originate from WR
stars due to rapid rotation in combination with increased rotational mixing, and
are most likely not physical.
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Figure 6.10: As Fig. , but only for the current preferential model. We provide
the results both for the formalisms based on Woosley (upper) and Belczynski

(lower).

very weak mass losﬁ, they explode as type IIp SN.

4We remind that here we discuss the grid with scaled down RSG mass loss, such that almost

no mass loss is present.
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6.4 Statistics for Microlensing

One aim of this thesis is to provide predictions that can be used for analysing
microlensing observations. The theoretical background is beyond the scope of
this thesis, an instructive summary has been provided by Wambsganss (2006)) and
Riffeser et al. (2006). As microlensing is a gravitational effect, the gravitational
mass is observed instead of the baryonic one, and we have to convert the masses
via Eqns. and ([3.4).

The microlensing probability is related to the fraction of mass available in
compact remnants. The total mass that is present in remnants can be found by
a convolution of the remnant mass relation with the initial mass function (IMF).
Under the approximation of a single stellar population (SSP, valid, e.g., for the
bulge of M31 — see below), and as massive stars live shorter than lower mass stars,
a “turn-off mass” Mro can be defined. Lower mass stars are still on the MS,
while more massive stars evolved further. As the later timescales are short, all
stars more massive than the turn-off mass have most likely turned into remnants.
Thus, the ratio of dark remnants to luminous stars for a SSP can be approximated

via

Mmax
Mrem,tot :fMTO IMF<M1)MT€m<Ml) dMZ

Mstar,tot fAJ/\[/[TO I]\4P7(]\471)]\4Z sz

(6.1)

The cut-offs of the integration are defined by the minimum stellar mass M,,;, and
the maximum mass of stars My.x. We adopt My, = 0.08M, as a theoretical
lower limit (Cohen [1988). The highest mass is still under debate, and we present
solutions based on different values. Most likely, it is M. 2 100M. Both values
may also depend on the metallicity. Descriptions for the IMF can be found in
various publications (see, e.g., the legend in Fig. .

The assumption of a single stellar population is reasonable for the bulge of M31,
where stars only formed, with a time-independent IMF, in the first 1...2 Gyr,
which is short compared to its age of O (10) Gyr (Stephens et al. 2003, Saglia
et al. 2010, Saglia et al. [2018]). For other systems, a more careful treatment is
required. As ongoing star formation in younger stellar populations drastically
changes the value of Mro, one needs to integrate over different turn-off masses
(corresponding to different times). Equation only provides a lower limit in
this case.

To calculate the remnant and luminous masses in Eqn. (6.1)), we numerically
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Figure 6.11: Ratio between mass included in compact remnants and visible mass,
for a Salpeter (1955) IMF with M. = 200M, at MW metallicity. The line
indicates the result when using the remnant mass relation provided by Renzini and
Ciotti (1993). The hatched area represents the possible range of our results without
the correction for the gravitational mass (horizontal hatching) and including the
correction ( ). The changes due to the gravitational correction are
very small. The vertical and horizontal lines at Mpo = 1My and M,epn /Mspar = 1
can be used for a better orientation in the plot. See text.

integrate over our grid using a five-point Newton-Cotes formula. For higher masses
beyond the upper mass limit of our grid, we apply the BH-relation M,.,, = M;/2,
based on the reasonable agreement with Renzini and Ciotti (1993) for higher
masses. For lower masses, we assume that NSs form for M; > 8.5M, (Renzini and
Ciotti|1993)), and WDs below. A relation for the remnant masses of WDs has also
been provided by Renzini and Ciotti (1993)).

In Fig. 6.11, we present our result for MW metallicity using the widely used
Salpeter (1955) IMF. To obtain the full range of possible values, we include all
models contained in our grids, as well as both formalisms to calculate the remnant
masses. We restrict the analysis to a physically relevant range, given by the oldest
existing populations, which have Mpo 2 0.7...1Mg, as can be concluded from
isochrones based on PARSEC and COLIBRIPL The effect of the correction for the

gravitational mass on the result is very small, far below the uncertainty range

Scalculations by Bressan et al. (2012), Chen et al. (2014, [2014), Tang et al. (2014), Marigo
et al. (2017), Pastorelli et al. (2019, 2020). The data is available online under http://stev.
oapd.inaf.it/cmd


http://stev.oapd.inaf.it/cmd
http://stev.oapd.inaf.it/cmd
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resulting from our various assumptions (grids).

As a comparison, the corresponding result for the remnant masses given by
Renzini and Ciotti (1993) is shown. Our relation coincides with the result based
on Renzini and Ciotti for Mpo > 60M, as we use the same relation for these
masses. Also for the lowest turn-off masses considered, they approach each other,
as the total remnant mass is dominated by the WDs due to the higher IMF weight
for less massive stars.

The impact of our calculations can be clearly seen for intermediate masses
Mpo = 1...20Ms. As we mostly predict higher remnant masses than Renzini
and Ciotti, the ratio of remnant to stellar mass is increased in most cases. At
higher turn-off masses Mro ~ 20...60M, our results predict an uncertainty
range around the relation based on Renzini and Ciotti. The general agreement at
higher turn-off masses can be explained by the reasonable agreement of our relation
and that of Renzini and Ciotti for initial masses M; > 40M, that dominate the
uncertainty. Indeed, there have been some models that produced slightly lower
remnant masses than predicted by Renzini and Ciotti. Here the high mass black
holes dominate the uncertainty range, even though the IMF in this range is lower.

We can conclude that our calculations mainly predict a higher total remnant-
to-star ratio compared to the relation based on Renzini and Ciotti (1993), except
for younger populations with high M7o, where our calculations mainly predict the

actual uncertainty range of this relation.

6.4.1 Constraining the IMF

Typically, when analysing microlensing observations, a certain IMF has to be
assumed. However, by measuring the total mass of remnants via microlensing,
measuring the visible mass directly, and using reliable stellar evolution models, one
might obtain meaningful constraints on the IMF, similar to the work by Green
(2016) and Niikura et al. (2019), who carried out observations to find a mass-
function for primordial BHs.

Including different IMFs in our analysis, we find an overlap for most of them,
especially at higher turn-off masses, as shown in Fig. [6.12] Even for the lowest
turn-off masses, there is still a large uncertainty range. The problem of finding
the IMF is degenerate when applying our (current) remnant mass relation.

To lower the uncertainty range, there is a need for better knowledge about

the parameters determining stellar evolution. Especially, the main sources
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Figure 6.12: Ratio between mass included in compact remnants and visible mass,
for different IMFs at MW metallicity. The range of possible values is indicated by
the hatched regions.

of uncertainties, namely the choice of the convective boundary criterion,
overshooting, and mass loss rates, need to be improved.

In addition to these imponderables in our theoretical considerations, MACHOSﬂ
in the Halo would produce additional lensing events, and thus influence the
measurement.

Already Riffeser, Seitz, and Bender (2008) concluded from their observed lensing
events in the bulge of M31 that at least one event cannot be explained by star
self-lensing. While they concluded that such events might be related to MACHOS,
an alternative reason is lensing due to remnants instead.

With our remnant mass relations we are able to clearly rule out certain IMFs.
For the bulge of M31 (with Mpo ~ 1My and Z ~ Zpmw) Riffeser (2020, priv.
comm.) argues that a factor 4...7 higher remnant masses are not seen in
microlensing surveys. Especially, the Zoccali et al. (2000) IMF with M. = 50M,
(solid line and enclosed region) would predict a very high total remnant mass. Most
likely, the remnant mass is lower than the stellar mass, and also the Matteucci
and Tornambe ((1987) model (solid line and enclosed region) can be excluded.

These results are independent of the assumption of a single stellar population,
as they require only an upper estimate of the remnant mass fraction. Thus far,
only 56 lensing events have been found in M31 (Lee et al. 2015), such that further
observations are necessary for improving the reliability of this result. Observing

several thousand lensing events would be required to put tight constraints on the

6Massive Compact Halo Objects
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shape of the IMF.

6.4.2 Different Metallicities

A similar analysis as for MW metallicities can be also performed for the other
metallicities of our model grids. For lower metallicities, the maximum remnant
masses, and thus the maximum possible ratio of total remnant to stellar mass,
increases, as shown in Fig. However, also the region of possible values
becomes larger, and may even extend towards lower remnant mass fractions. While
this effect is small when comparing our results for MW and LMC metallicity, it
becomes obvious when analysing the lowZ data.

The high uncertainty range can be explained by two main reasons. The first
is the difference between models with almost no mass loss and models where the
mass loss is drastically enhanced by quasi-chemically homogeneous evolution. The
second, and even more important source for uncertainties, is the difference between

the two formalisms to estimate the remnant mass, as described in Sec. [6.1.3]
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7 Conclusion and Outlook

The final aim of this work was to find the end products of massive star evolution in
dependence of the initial mass and the most important physical uncertainties. To
accomplish this goal, we calculated model grids of stellar evolution with the MESA
code up to carbon exhaustion. From this point on, we used different formalisms
to link the progenitor properties to the corresponding remnant.

In Chpt. 2| we presented the most important physics for such calculations
and the involved uncertainties. Most of the processes have to be approximated
and formulated in a 1d description. Convection is included following the mixing
length theory, where already the choice of the convective boundary criterion is
still under debate. To take into account the finite velocity of the convective
bubbles, convective overshooting has to be included. Different studies calibrate
the overshooting parameter above the convective core, where such calibrations
strongly depend on other physical assumptions, especially the applied mass loss
rates. Finally, the efficiency parameters for rotational mixing have to be calibrated.

Magnetic fields can be measured in O (10) % of massive stars. In MESA, they are
implemented in the description of the Spruit-Tayler dynamo, which can reproduce
some key findings, but has physical problems, and most likely does not work.

Mass loss rates of massive stars are still under discussion. Different descriptions
have to be used, depending on the evolutionary stage. Recent observations and
simulations suggest that the rates of Vink, de Koter, and Lamers (2001) may be
too high. Especially, the bi-stability jump has to be shifted towards lower effective
temperatures, and its role for the mass loss rates might be less important than
previously thought. The metallicity scaling of the mass loss rates in the RSG
regime is unknown, and adds a huge uncertainty at very low metallicities.

In order to understand how MESA works, and which parameters are important,
we explored the impact of specific parameters in Chpt. 3] Four of them were

discussed in more detail.
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For the existence of the predicted p-barrier, the smoothing of the composition
gradient has to be avoided.

The choice of the overshooting parameter is not only important in the core, but
too large values for the extension of the convective region below a shell can lead
to significant problems, especially at lower metallicities or lower mass loss rates.
Shell-undershooting mixes unprocessed material down into the core, and causes
the convective shell to move down, until the core burning might be extinguished.

Finally, stars with a convective envelope during later evolutionary phases may
evolve close to the Eddington-limit and become unstable. This can be avoided
by increasing the convective efficiency with the help of the MESA module MLT++.
In combination with the choice of the boundary criterion for the atmospheric
pressure, these settings can drastically increase the stability of the calculations
(though it might lead to somewhat unphysical solutions, by suppressing envelope
inflation).

To explore the differences between MESA and other stellar evolution codes, we
compared our simulations with results of Brott et al. (2011) and Ekstrém et al.
(2012) who used the STERN and GENEC code, respectively. We found that the
most crucial difference for non-rotating model is the implementation of the mass
loss, and especially if the second bi-stability jump is included or not. In addition,
the evolution of the 60M model close to the hook is highly parameter dependent.
Effects of second order can have a huge impact for this model, as they decide if it
crosses the second jump already on the main sequence. The actual behaviour could
be revealed by analysing the convergence of the model by consecutively varying
the timestep controls.

For rotating models, the treatment of angular momentum transport is crucial.
While in MESA and STERN it is implemented as a purely diffusive process,
Ekstrom et al. (2012) argue that it needs to be treated as an advective process
instead. This can cause drastic differences.

For our main calculations, we set up a grid of stellar evolution models with
different initial masses in the range from 10...60M, and rotational velocities up
to 0.4 of the critical value, as described in Chpt. [ We calculated models at three
metallicities, namely a vary low one (Z = 107°), and LMC (Z = 0.0047) and MW
(Z = 0.014) metallicity. In order to study the uncertainties, we varied the choice
of the convective boundary criterion, the implementation of magnetic fields, the
overshooting value, mass loss rates, and the rotational mixing coefficients.

Rotation can influence the surface abundances on the MS drastically.
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Nevertheless, it only has a minor impact on the evolutionary path and on the
final mass for MW and LMC metallicity. For most of the models, it decreases
the luminosity due to the reduced effective gravity. Mixing processes are efficient
enough to increase the luminosity only in a few rapidly rotating models, especially
at lower metallicity or if mixing is increased. The low importance of rotation
and the dominance of the effect reducing the luminosity can be explained by the
slowdown of rotation already on the MS. As internal magnetic fields enforce a solid
body rotation, the surface rotational velocity is higher and the effects of rotation
increased when the Spruit-Tayler dynamo has been switched on.

In contrast, the choice of the convective boundary criterion adds an important
uncertainty due to differences in the envelope convection after core hydrogen
exhaustion. Models calculated using the Ledoux criterion undergo a dredge-up,
but have smaller core masses compared to the Schwarzschild case. The different
structure alters the later timescales, and results in strong differences in the final
masses.

In addition, changing the mass loss rates can have drastic effects on the
evolution. If the total mass loss is reduced, even at MW metallicity the highest
mass stars considered do not become WR stars! Increasing the overshooting has
the opposite effect, and shifts the lower mass limit for the formation of WR stars
towards lower masses. Nevertheless, both, reduced mass loss rates and increased
overshooting, result in increased core masses.

An increase in the rotational mixing efficiency can lead to extreme effects on
the evolution. Rapidly rotating models even become WR stars for M; = 10M
via QCHE independent of the metallicity, which is most likely not physical.

WR stars that formed via QCHE, as well as “classical” ones, show a convergence
of final and core masses, as the core is uncovered. In addition, the final and
remnant masses depend only weakly on their earlier evolution, due to the specific
behaviour of their mass loss rates.

The remnant mass at all metallicities follows the same systematics as the core
masses. Regarding the metallicity, the remnant mass is increased for lower values.
Also the spread becomes much larger. One reason is the difference between models
without almost any mass loss and others, that still undergo mass loss during the
RSG phase. The main source for uncertainties at low metallicities, however, is the
formalism used to predict the remnant mass!

Comparing our remnant masses with other studies, we find a surprising

agreement with the relation by Renzini and Ciotti (1993) for the highest mass
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stars, that end as WR stars. For smaller mass stars, we find higher remnant
masses. The main differences to the simulations by Woosley, Heger, and Weaver
(2002) and Heger and Woosley (2002)) is the treatment of overshooting and mass
loss, especially in the WR regime. We conclude that using modern calculations
and state-of-the-art physical assumptions, our predictions for remnant masses at
MW metallicity are considerably larger than those predictions, for a wide range
of initial masses.

Subsequently, we have presented diagrams displaying the remnant and explosion
types depending on metallicity and initial mass. We provide diagrams including
the derived uncertainties, and thus with overlap regions between different types,
and alternative diagrams for our current preferential model with clearly distinct
regions. The uncertainty regions are relatively narrow, and much smaller than
expected from the large number of uncertain parameters.

As for the remnant masses, we find a shift of the different regions towards lower
initial masses compared to the results of Heger et al. (2003)), due to overshooting.
Except for this shift, all our results are very similar to those of Heger et al. (2003).
Especially, the remnant type is (almost) independent of the metallicity. This bases
on the weak importance of mass loss rates (being the main difference between
the metallicities) for the final carbon core masses. WR stars might change this
behaviour at higher metallicities, however we apply drastically reduced WR mass
loss rates compared to Heger et al., and they only form for higher masses than
where the transitions between different types occur. We thus also observe this
metallicity-independence at MW metallicity.

Finally, we discussed the total mass fraction of remnants compared to the
luminous stellar mass, in dependence of the initial mass function. Knowledge of
this relation is especially relevant for interpreting microlensing events. We find a
large uncertainty range and overlap between different IMF's. The uncertainty range
increases for lower metallicities, mainly due to the uncertainty in the formalism
to predict the remnant mass from the progenitor properties. Nevertheless, this

diagram can be useful to rule out specific IMFs via present and future observations.

Outlook

The results presented in this work should be permanently revised and updated, if

sources for uncertainties can be reduced or improved stellar evolution models are
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available. The limits presented by us have to be understood as current, reasonable
ranges.

The descriptions for mass loss rates are strongly under discussion, with many
recent results, that will probably allow to better constrain the mass loss. Not only
the rates for non rotating models have to be improved, but also the behaviour of
mass loss with rotation. A possible solution might be two-dimensional models (e.g.
the ESTER code, Gagnier et al. |2019), that can treat the impact of rotation with
less approximations. The best would be full 3d simulations, which will, however,
be not available in the near future.

One of the most important open questions that will most likely remain unsolved
in the near future is the description of mass loss during the LBV phase.

As the calibrations of several parameters depend on other physical assumptions,
primarily on the applied mass loss description, they may become more reliable in
parallel with increased knowledge about mass loss rates.

In order to reduce the uncertainties of the remnant-linking at lower metallicities,
further studies of the late evolution until iron core formation are necessary.

In addition to possible improvement, our grid should be extended towards higher
and lower initial masses. For the results relevant for microlensing, especially the
lower mass range is of great importance, such that we do not need to rely on the
relations presented by Renzini and Ciotti, but also find the potential range for
remnant masses.

As several microlensing observations are carried out in M31, also an extension
of our grids towards higher metallicities could be useful.

Finally, a more detailed analysis of the surface abundances, the impact of
the different parameters, and the corresponding uncertainties on the MS, in
combination with spectroscopic observations, will allow us to provide further

constraints on the physical assumptions and processes.
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A Massive Star Evolution with

MESA — Set-Up and Technical
Aspects

A.1 EOS, Opacities, Nuclear Reaction Rates

The MESA equation of state is a blend of the OPAL (Rogers and Nayfonov 2002),
SCVH (Saumon, Chabrier, and van Horn |1995), PTEH (Pols et al. 1995, HELM
(Timmes and Swesty 2000), and PC (Potekhin and Chabrier 2010) equations of
state.

Radiative opacities are primarily from OPAL (Iglesias and Rogers 1993, (1996)),
with low-temperature data from Ferguson et al. (2005) and the high-temperature,
Compton-scattering dominated regime by Buchler and Yueh (1976). Electron
conduction opacities are from Cassisi et al. (2007)).

Nuclear reaction rates are from JINA REACLIB (Cyburt et al. 2010) plus
additional tabulated weak reaction rates (Fuller, Fowler, and Newman 1985, Oda
et al. (1994, Langanke and Martinez-Pinedo |2000). Screening is included via the
prescription of Chugunov, Dewitt, and Yakovlev (2007). Thermal neutrino loss
rates are from Itoh et al. (1996).
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A.2 MESA setup

A.2.1 Installation and first steps

We use MESA version 12115 together with MESA SDK version 201908307 For
the installation, we followed the description on the MESA webpagd®] where all
requirements are listed as well. As MESA is programmed in Fortran (partly
including 2003 standard), an up-to-date compiler is necessary for the installation,
which is distributed within the SDK.

To become familiar with MESA, the tutorial is an excellent starting point,
published on the MESA webpagd’] This does not only teach how to change
the settings, but also some basic knowledge about the in-build analysis routines.
Settings useful for the calculations of a specific model can be found in the
test_suite examples. However, settings often have to be adjusted to more

physical values.

A.2.2 Starting our project

The black hole test_suite provided a good foundation for our work, because
of several reasons: First, it contains the necessary settings and is designed for the
calculation of a high mass star, while many other examples are designed to tackle
the evolution of low mass stars. Since these evolve differently, only high mass stars
with at least 8 M, are relevant for our work. Second, the evolution includes also
later phases, which is advantageous compared to the high mass test_suite, from
which we started initially. Especially these later phases after the MS require a
careful choice of numerical and physical parameters. Third, black hole includes
rotation. This is the main advantage over ppisn which also fulfills the first two
criteria from above.

In addition, we combine settings from inlists provided by Z. Keszthelyi’| and by
Eva Sextl (2019, priv. comm.). Our final inlists are provided in App.

LAll versions are available online under https://sourceforge.net/projects/mesa/files/
releases/

“Information and releases available online under http://www.astro.wisc.edu/~townsend/
static.php?ref=mesasdk

Shttp://mesa.sourceforge.net/

‘http://mesa.sourceforge.net/starting.html

Savailable under https://doi.org/10.5281/zenodo .3250412


https://sourceforge.net/projects/mesa/files/releases/
https://sourceforge.net/projects/mesa/files/releases/
http://www.astro.wisc.edu/~townsend/static.php?ref=mesasdk
http://www.astro.wisc.edu/~townsend/static.php?ref=mesasdk
http://mesa.sourceforge.net/
http://mesa.sourceforge.net/starting.html
https://doi.org/10.5281/zenodo.3250412
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A.2.3 Visualisation and Troubleshooting

A first impression on how the calculation proceeds can be gained using the MESA
module pgstar. It contains a variety of options and diagrams that might be
displayed. These can also be saved as images (typically in the png format, but
also pdf is possible) for a later analysis. All options relevant for the creation
of diagrams can be changed during the run. However, for a detailed analysis and
comparison of different models, more advanced plotting routines are useful. MESA
offers routines programmed in pythonf] However, we chose to do our analysis in
IDL, also based on existing routines, described in Sec.

If problems of any kind occur during the calculations, a helpful guide for solving
them is provided on the MESA webpagel’| For more specific questions about the
implementation of physical aspects, we advise to consult the MESA instrument
papers (Paxton et al. 2011, 2013, 2015, 2018, 2019). As well, the MESA mailing
list archivef| contains solutions for various specific problems. In addition, a closer
look on the output data and different diagrams can give enlightening hints, at

which time the problematic behaviour begins and what the reason might be.

A.3 Settings for Our Calculations with MESA

For different evolutionary stages, the settings have to be adjusted. Different
test_suites contain scripts that can execute a MESA run with different inlists,
depending on the evolutionary stage. For the purpose of modifying the settings,
the MESA calculation is interrupted. However, these runs use “restart-models”,
which only contain limited information about the complete model. When loading
a model, the later run is affected by that interruption. In order to restart without a
loss of information, we use “photos” instead, that contain all information necessary
for the runfl

The different parts of the evolution are combined using a Linux bash script. This
script is especially designed to run a grid of models, where all possible parameters
can be varied.

We take advantage of the different possibilities to parallelize the calculation.

At first, a single instance of MESA can make efficient use of multiple threads,

Shttp://mesa.sourceforge.net/output.html#python

"http://mesa.sourceforge.net/troubleshooting.html

Shttps://lists.mesastar.org/pipermail/mesa-users/

9A comparison of the MS evolution of models after restart with photo and model at the
ZAMS has been provided by Ferraro (2020).
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as discussed further in App. [A.6l This is done by setting the system variable
OMP_NUM_THREADS. We chose the optimum number of 16. In addition, several
instances of MESA can be executed in paralle]”} MESA has been designed in a

thread save way, however one has to take care of the system requirements described

in Sec. [4.3]

A.3.1 Structure of Inlists

The inlists are contained within the inlist/ directory and are split in the following

way:
e inlist (main inlist) includes the following inlists:

— inlist_ massive_defaults

— inlist_common

inlist_Z abundances, where Z has to be replaced with mw, 1mc, lowz

inlist massive stars (adopted as a general name for simplicity; the
original name is inlist to X with different phases X) includes the

following inlists:

% inlist after zams general, used for all phases from the ZAMS

on (as the name suggests)
* inlist_to_X_common

* inlist_to_X_values, copied to the directory of the individual run

The inlists written with red color are copied inside the directory of each run, while
all other inlists are fixed and stay inside the inlists/ directory, and thus are used
for all runs.

The execution is split into different evolutionary stages:
e pre-MS (inlist_to_zams),
e MS (inlist_to_he zams),
e until central helium exhaustion (inlist_to he tams), and

e until central carbon exhaustion (inlist_to_c_burn)

0Djiscussions on the optimal use of multiple threads can also be found on the MESA mailing
list.
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and corresponding inlists with appendices _common and _values (replacing the X
from the previous list).

Each of the inlists inlist to X _common contains a stopping condition. When
all models finished the calculation of a certain phase, the last photos are used for
a restart, where the phase-specific inlists are exchanged with those for the next
phase. After central carbon exhaustion, the script continues with some basic data
analysis. As the calculation proceeds automatically, all inlists should be provided

before starting a run.

A.3.2 Setup and Execution

For running a grid of models within our approach, the following has to be prepared:
1. The abundance can be chosen by using the corresponding inlist (see above).
2. All other inlists may also be adjusted if necessary.

3. The inlists used for different parts of the evolution, inlist_to_X_values,
have to be manipulated. Placeholders can be inserted, which should be
varied during the run. <<PLACEHOLDER>> is replaced by the different values.

4. The list of values for the placeholders is provided in models.dat and
pms_models.dat. Placeholders are given in the first line of the two files
(same order in both files). As, e.g., rotation is activated only after the
pre-MS, models.dat can contain more placeholders. In the following lines,
the values are specified. We note that an empty line at the end has to be

inserted.
5. The parallelisation has to be adjusted inside

e run parallel: OMP_NUM THREADS (threads used by a single MESA

instance) and
e run all mesa: parallel runs (number of MESA instances executed
in parallel).

6. The execution is started by run parallel.

In addition to the routines necessary for the run, we created additional routines
for easy clean-up, storage reduction and data analysis. For sake of brevity, we will

not discuss these in more detail.
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A.4 Inlists

As described in Sec. [A.3.1] we use different inlists for our MESA calculations.

Each inlist is divided into three sections. The first section star_job contains
mainly settings that are necessary to set up the model and initialise the run. It
is followed by the controls section, which contains the majority of the physical
and numerical parameters. The third section is responsible for manipulating the
visualisation with pgstar (as long as it is activated in the first section), and
omitted in our inlists.

The inlist massive default is distributed together with the MESA version.

In the following, we will provide all other inlists.

A.4.1 Abundances

MW

&star_job

kkkskkskokokkkx initial Abundances s kskskskskskskskkskskkkkkk

initial_zfracs = 8 ! Asplund 2009 corrected (see chem/public/chem_def)
initial_hl = 0.715

initial_h2 =0

0

0.271

initial_he3

initial_he4

/ '# end of starjob namelist

&controls

Ikkskokokkkkkkk initial Mass/initial_z etc. skskskokkskk
initial_z = 0.014 ! Pryzbilla

Zbase = 0.014

initial_y = 0.271

/ '# end of controls namelist
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LMC

&star_job

skskskskskokkkokokk initial Abundances sckskskskskskskskskskskkkkkk

initial_zfracs = 0 ! define them in controls

initial_hl = 0.7391
initial_h2 = 0
initial_he3 =0
initial_he4 = 0.2562

/ '# end of star_job namelist

&controls
Prskokkokkskokkkkx initial Mass/initial_z etc. skskkkskokxk
initial_z = 0.0047

Zbase = 0.0047
initial_y = 0.2562

z_fraction_Be = 0
z_fraction. B = 0
z_fraction_C = 0.1022
z_fraction_ N = 0.0168
z_fraction 0 = 0.5428 ! + 1 at last digit for sum
z_fraction_ F = O
z_fraction_Ne = 0.0835
z_fraction_Na = 0.0021
z_fraction_Mg = 0.0408
z_fraction_Al = 0.0038
z_fraction_Si = 0.0672
z_fraction_P = 0.0004
z_fraction_S = 0.0266
z_fraction_Cl = 0.0007
z_fraction_Ar = 0.0037

z_fraction_K = 0.0003
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z_fraction_Ca = 0.0049
z_fraction_Sc =
z_fraction_Ti = 0.0002
z_fraction_ V. = 0
z_fraction_Cr = 0.0014
z_fraction_Mn = 0.0008
z_fraction_Fe = 0.0952
z_fraction_Co = 0.0003
z_fraction_Ni = 0.006
z_fraction_Cu = 0.0001
z_fraction_Zn = 0.0002

/ '# end of controls namelist

lowZ

&star_job

Lsskskokokokokokokkk initial Abundances sskskskskskskskokskokskokskskskk

initial_zfracs = 8 ! Asplund 2009 corrected (see chem/public/chem_def)
initial_hl = 0.75229
initial_h2 = 0

0
0.2477

initial_he3

initial_he4

/ '# end of starjob namelist

&controls

Pxskokkkxkokkkx initial Mass/initial_z etc. sxkkkkxk

initial_z 1.d-5
Zbase = 1.d-5
initial_y = 0.2477

/ '# end of controls namelist
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A.4.2 inlist_common

&star_job
eos_file_prefix = ’mesa’
kappa_file_prefix = ’gs98’ ! inlist_massive_defaults

/ '# end of star_job namelist

&controls

use_eps_mdot = .false.

dedt_eqn_r_scale = 0d0 ! <= 0 means use old scheme

! radiation pressure at boundary

Pextra_factor = 2 ! important near eddington limit

Dokokokokokokokokokokok F(JS  skokokok ok ok ok sk skok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok ok skok ok ok ok

use_eosDT2 .true. !default

use_eosELM .true. !default

Dskoskskskskskokokokkk SOLVER  okokokskskosk skokok sk sk sk s ok ok ok sk 3k 3 ok ok ok ok ok sk ok ok

.true. !default

use_gold_tolerances

scale_max_correction = 0.2d0

ignore_species_in_max_correction = .true.

smooth_convective_bdy = .false. ! avoid numerical changes in composition.

soksokokokokokokkk ROTATION / MIXING skokskokskokskokoskokokokokokokokok ok

.true.

0.1

semiconvection_option = ’Langer_85’

use_Ledoux_criterion

alpha_semiconvection
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num_cells_for_smooth_gradl_composition_term = 0O

I + ‘D_DSI‘ = dynamical shear instability
I + ‘D_SH® = Solberg-Hoiland
I + ‘D_SSI‘ = secular shear instability
I + ‘D_ES‘ = Eddington-Sweet circulation
I + ‘D_GSF‘ = Goldreich-Schubert-Fricke
I + ‘D_ST‘ = Spruit-Tayler dynamo
I## Diffusion coefficients for chemical mixing
D_DSI_factor = 0 I only late pre-SN phases
D_SSI_factor =1
D_SH_factor =1
D_GSF_factor = 1
D_ES_factor =1
D_ST_factor

I## Diffusion coefficients for angular momentum transport set

am_nu_visc_factor = 0 | timescale > hubble time
am_nu_ST_factor =1 I magnetic field
am_nu_factor = 1

am_D_mix_factor = 0.03333333d0

am_gradmu_factor = 0.05 ! default

mixing_length_alpha = 1.5
MLT _option = ’Mihalas’

recalc_mixing_info_each_substep = .true.

I stokoksfokokskokokskok MESH  skoskok ok sk sk ok ok sk ok ok sk ok ok sk ok ok sk sk ok sk sk ok sk sk ok ok sk ok ok sk

mesh_delta_coeff = 0.6
mesh_delta_coeff_for_highT = 0.6

max_dq = 1d-3 ! -3 from zsolt, so at least 1000 cells.

0 ! no transport of elements due to magnetic fields
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I avoid over-resolving composition changes

min_dq_for_xa = 1d-4

logT_max_for_standard_mesh_delta_coeff = 9.0
logT_min_for_highT_mesh_delta_coeff = 9.5

I from zsolt, important for avoiding problems near Eddington limit
max_q_for_k_const_mass = 0.98

min_q_for_k_const_mass = 0.98

Dokokokokokokokokokokosk ML T+ skokookookokokskok ok ok ok ok sk ok ok ok ok ok sk skok ok ok ok ok skok ok ok ok

I important for avoiding problems near Eddington limit
gradT_excess_age_fraction = 0.95

gradT_excess_max_change = 0.001

I sokoksokokkokokkk TIMESTEP skskokokskookok skokook sk ok ok sk ook sk ook sk ook ok sk okok sk
varcontrol_target = 7d-4 13d-4 !7d-4
delta_lgRho_cntr_limit = 1.2d-2
delta_lgT_cntr_limit = 2.0d-3
dX_nuc_drop_limit_at_high T = 2d-3
delta_lgR_limit = 0.05

delta_HR_limit = 0.05

delta_HR_hard_limit = 0.1

relax_hard_limits_after_retry = .false.

delta_lgL_nuc_limit = 0.2

0.0
delta_lg XH_cntr_min = -6.0
delta_lg XH_cntr_limit = 0.01d0

delta_lg XH_cntr_max
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0.0
delta_lg _XHe_cntr_min = -6.0
delta_lg _XHe_cntr_limit = 0.01d0

delta_lg_XHe_cntr_max

0.0d0
delta_lg XC_cntr_min = -6.0d0
delta_lg _XC_cntr_limit = 0.01d0

delta_lg_XC_cntr_max

Dskokokskskskokokokokk WIND  kokskoskok ok sk sk sk ok ok ok sk sk ok o ok ok ok ok 3k K ok ok ok ok ok ok ok

cool_wind_RGB_scheme ’Dutch’

cool_wind_AGB_scheme = ’Dutch’

hot_wind_scheme = ’Dutch’

use_other_wind = .true.

Dutch_scaling_factor = 1.0

Vink_scaling_factor = 1.0
x_ctrl(20)

-1 ! Jump temperature, use Vink prescription for <= 0

x_ctrl(21)

0 ! exponent for metallicity scaling of de Jager rates

cool_wind_full_on_T = 0.8d4
hot_wind_full _on_T = 1.244

max_mdot_redo_cnt = 100
surf_w_div_w_crit_limit = 0.96d0
surf_w_div_w_crit_tol = 0.05d0

mdot_revise_factor = 1.2d0

kokskskskskokokkkx QVERSHOOTING s koskokskskok sk okok sk sk sk sk sk ok ok ok ok sk ok ok

I offset

overshoot_f0_above_nonburn_core = 0.01
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0.01
0.01

overshoot_f0_above_nonburn_shell

overshoot_f0_below_nonburn_shell

overshoot_f0_above_burn_h_core = 0.01

overshoot_£f0_above_burn_h_shell = 0.01
overshoot_fO0_below_burn_h_shell = 0.01
overshoot_£f0_above_burn_he_core = 0.01

overshoot_f0_above_burn_he_shell = 0.01
overshoot_f0_below_burn_he_shell = 0.01

overshoot_£f0_above_burn_z_core = 0.01
overshoot_f0_above_burn_z_shell = 0.01

overshoot_fO0_below_burn_z_shell = 0.01

I exponential
overshoot_f_above_nonburn_core = 0.0
overshoot_f_above_nonburn_shell = 0.0

overshoot_f_below_nonburn_shell = 0.0

overshoot_£f_above_burn_h_core = 0.0

overshoot_£f_above_burn_h_shell = 0.0
overshoot_f_below_burn_h_shell = 0.0
overshoot_£f_above_burn_he_core = 0.0

overshoot_f_above_burn_he_shell = 0.0

overshoot_f_below_burn_he_shell = 0.0

overshoot_f_above_burn_z_core = 0.0
overshoot_f_above_burn_z_shell = 0.0

overshoot_f_below_burn_z_shell = 0.0

I step
step_overshoot_f_above_nonburn_core = 0.345
step_overshoot_f_above_nonburn_shell = 0.!345

step_overshoot_f_below_nonburn_shell = 0.!345
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step_overshoot_f_above_burn_h_core = 0.345

step_overshoot_f_above_burn_h_shell = 0.!345

step_overshoot_f_below_burn_h_shell = 0.!345
step_overshoot_f_above_burn_he_core = 0.345

step_overshoot_f_above_burn_he_shell = 0.!1345
step_overshoot_f_below_burn_he_shell = 0.!345

step_overshoot_f_above_burn_z_core = 0.345
step_overshoot_f_above_burn_z_shell = 0.!345

step_overshoot_f_below_burn_z_shell = 0.!345

I helps with off center ignition in progenitor
I2nd scale length for exponential overshooting
0.10

1d10 !'initial diffusion coefficient

overshoot_f2_below_burn_z

overshoot_D2_below_burn_z

Lsoksokokokokokokkk STOPPING CONDITION sksksksksk sk sk ok ok ok ok ok ok ok ok ok

1d-3
1d-3

when_to_stop_rtol

when_to_stop_atol

Dskoskokskskokokokokokk  QUTPUT  skokokokskskok skokok sk sk sk ok ok ok sk 3k K ok ok ok ok ok ok ok

profile_interval = 10

max_num_profile_models = 10000
history_interval = 1
terminal_interval = 100
write_header_frequency = 500

photo_interval = 5000

| definitions of core boundaries

he_core_boundary_hl_fraction = 0.5
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c_core_boundary_he4_fraction

o_core_boundary_cl2_fraction
si_core_boundary_ol6_fraction = 0.5

fe_core_boundary_si28_fraction = 0.33

/ '# end of controls namelist

A.4.3 Phase-Specific

Pre-MS

common

&star_job

create_pre_main_sequence_model = .true.
write_profile_when_terminate = .false. !default
set_uniform_initial_composition = .true.

Lsskskskokkkkkkk ROTATION ACTIVATION sokskskskskokokokokskk k% k

! no rotation before zams
change_rotation_flag = .true.

new_rotation_flag = .false.

/ '# end of starjob namelist

&controls

0
0

max_model _number = 5000

max_number_backups

max_number_retries

Lsokokokokokokokokokok TIMESTEPR  skoksksk sk sk sk sk sk sk sk ok o o o o ok ok ok ok ok ok ok ok ok ok

7d-4

-1 ! no varcontrol increase

varcontrol_target

x_integer_ctrl(1)
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x_integer_ctrl(3) = -1 ! no varcontrol increase

Ikokskkkkkokkkx STOPPING CONDITION skskskokskskskskskokokskskkkkok

Lnuc_div_L_upper_limit = 0.9

Dskokskskskskokokokokk  QUTPUT  skokokokskskosk skokok sk sk sk s ok ok ok ok sk ok ok ok ok ok sk ok ok

warn_when_large_rel_run_E_err = 1d99 ! off until reach zams

x_logical_ctrl(1) .false. ! do varcontrol debugging

x_integer_ctrl(5) = 0 ! minimum counter for varcontrol debugging

/ '# end of controls namelist

values

&star_job

/ '# end of starjob namelist

&controls

kokskskskskokokkkkx INITIAL MODEL  okokskskskskokokokok ks sk ok ok ok ok sk ok ok

initial_mass = <<MASS>>

I stokokskokokskorokskok QTHER  skok ok sk sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk sk ok sk sk ok ok sk ok ok sk

. <<LEDQUX>>.
0.1

use_Ledoux_criterion

alpha_semiconvection

/ '# end of controls namelist

MS

cominon

&star_job
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set_initial_cumulative_energy_error = .true.

new_cumulative_energy_error = 0d0

Lsokskokskokokokokkk ROTATION ACTIVATION skkskskskkskokokokokokok ok ok ok

| activate rotation from now on
new_rotation_flag = .true.

change_rotation_flag = .true.

I rotational velocity in km sec”™-1
Inew_surface_rotation_v = 0
lrelax_surface_rotation_v = .true.

! omega in units of critical rotation
new_omega_div_omega_crit = 0.0

relax_omega_div_omega_crit = .true.

! use this many steps to change value

num_steps_to_relax_rotation = 100

/ '# end of star_job namelist

&controls

Lsoksokokokokokokkk STOPPING CONDITION sksksk sk sk sk sk ok ok ok ok ok ok ok ok ok

xa_central_lower_limit_species(l) = ’hl’

xa_central_lower_limit(1l) = 1d-3

/ '# end of controls namelist

values

&star_job

kokskskkskokokkkkx ROTATION ACTIVATION skokokokskskskskokokskskkkkok
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Inew_surface_rotation_v = <<VROT>>

new_omega_div_omega_crit = 0.<<OMEGA>>

/ '# end of star_job namelist

&controls

Dskokskskskskokokokokk  QTHER ok skokok sk sk sk ok ok sk sk sk o ok ok ok sk sk 3 ok ok ok ok ok ok ok

. <<LEDQUX>>.
0.1

use_Ledoux_criterion

alpha_semiconvection

am_nu_ST_factor = <<ST>>

/ '# end of controls namelist

Until Central Helium Exhaustion

comimmon

&star_job

/ '# end of star_job namelist

&controls

soksokokokokokokkk STOPPING CONDITION skoksksk sk sk koo skokskok ok ok ok ok

xa_central_lower_limit_species(1l) = ’hed’

xa_central_lower_limit(1) = 1d-3

/ '# end of controls namelist

values

&star_job

/ '# end of star_job namelist

&controls
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I stokosksfokokskorokskok QTHER,  skok ok sk sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk sk ok ok sk ok ok sk

. <<LEDQUX>>.
0.1

use_Ledoux_criterion

alpha_semiconvection

am_nu_ST_factor = <<ST>>

/ '# end of controls namelist

Until Central Carbon Exhaustion

comimmon

&star_job

/ '# end of star_job namelist

&controls

Iskkoskskkkskkkskk STOPPING CONDITION skskskok sk sk ok sk sk ok ok 5k ok ok 5k k 5k

xa_central_lower_limit_species(1l) = ’c12’

xa_central_lower_limit(1) = 1d-3

/ '# end of controls namelist

values

&star_job

/ '# end of star_job namelist

&controls

D skoskorokokoskokokokokok  QTHER  skok ok ok ok sk sk ok ok ok ok sk sk sk ok ok ok ok sk sk ok ok ok ok sk ok ok ok ok ok

.<<LEDQUX>>.
0.1

use_Ledoux_criterion

alpha_semiconvection

am_nu_ST_factor = <<ST>>
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/ '# end of controls namelist

inlist_after_zams_general

&star_job

logT_for_conv_vel_flag = 8.5d0

/ ! end of star_job namelist

&controls

-1 1300 ! no limit
-1 13000 ! bo limit

max_model_number = 20000

max_number_backups

max_number_retries

skoksrsrosroskokokokkk INITIAL MODEL  skokoskokokoskskokokokskskokokskok ok sk ook ok
| set inside abundace and to_zams inlist.
Dsoksokokokokokokoksk SOLVER  skokskskskskok sk sk skokskokok ok ko ok okokokok sk okok sk ok ok
gold_iter_for_resid_tol3 = 10
gold_tol_residual_norm3 = 1d4-6
gold_tol_max_residual3 = 1d-3

ignore_too_large_correction = .true.

Pxokxokskokskokkkk STRUCTURE EQUATIONS skokskokskokoskskokskokkokk ok k

use_dedt_form_of_energy_eqn = .true.
min_energy_for_dedt_form_of_energy_eqn = 1d13
min_cell_energy_fraction_for_dedt_form = 1d-10

Iskokskskskskokokokkk TIMESTEP  skokskskokskokoksk sk sk s ok ok ok ok 3k 3 ok ok ok ok ok sk ok ok

limit_for_rel_error_in_energy_conservation = 1d-4
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0 ! initialise counter for varcontrol increase

x_integer_ctrl(1)

x_integer_ctrl(2) 1000 ! number of steps when to reduce

x_ctrl(1l) = 5e-5 ! maximum dHR when to start counter

x_ctrl(2) = 5 ! increase factor

x_integer_ctrl(3) = 0 ! initialise counter for varcontrol increase 2
x_integer_ctrl(4) = 1500 ! number of steps when to reduce 2
x_ctrl(3) = 1.3e-4 ! maximum dHR when to start counter 2

x_ctrl(4) = 5 ! increase factor 2

D stokosksfokokskorokskok WD okoskok ok sk sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk sk ok ok sk ok ok sk

max_tries_for_implicit_wind = 0 ! 20
iwind_tolerance = 1d-3
iwind_lambda = 1 ! 0.5d0

max_T_center_for_any_mass_loss = 1.1d9

I skskokskskokskskoksksk (QUTPUT  skskok sk sk ok ok sk sk sk sk sk ok k sk ok 3k >k ok 3k >k sk ok >k sk ok 5k %k 5k

warn_when_large_rel_run_E_err = 1d99 ! off

x_logical_ctrl(1) .false. ! do varcontrol debugging

x_integer_ctrl(5) 0 ! minimum counter for varcontrol debugging

/ ! end of controls namelist

A.4.4 Different Grids

For calculating the different grids we had to alter the inlist_common. In the

following, we will provide the changes.

Grid 2

default:
e step_overshoot_f_above_nonburn_core = 0.345

e step_overshoot_f_above_burn_h_core = 0.345



Massive Star Fvolution with MESA — Set-Up and Technical Aspects

130

e step_overshoot_f_above_burn_he_core = 0.345

e step_overshoot_f_above_burn_z_core = 0.345

adjusted:

e step_overshoot_f_above_nonburn_core = 0.51

e step_overshoot_f_above_burn_h_core = 0.51

e step_overshoot_f_above_burn_he_core = 0.51

e step_overshoot_f_above_burn_z_core = 0.51

Grid 3a

default:
e Dutch_scaling_factor
adjusted:

e Dutch_scaling_factor

Grid 3b
default:
e Dutch_scaling_factor
e x_ctrl(20) = -1
adjusted:

e Dutch_scaling_factor

e x_ctrl(20) = 20d3

Grid 3c
default:
e Vink_scaling_factor
e x_ctrl(20) = -1
adjusted:

e Vink_scaling_factor

e x_ctrl(20) = 2043

1.0

0.4

1.0

0.4

1.0

0.4
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Grid 3d

default:
e Vink_scaling_factor = 1.0
e x_ctrl(20) = -1
e x_ctrl(21) =0

adjusted:
e Vink_scaling_factor = 0.4
e x_ctrl(20) = 20d3
e x_ctrl(21) = 0.7

A.4.5 Adjustments for Avoiding Problems

As discussed in Sec. we sometimes had to change the settings to avoid
problems.

A first step was to comment out the following lines:

0.0

e delta_lg XH_cntr_max

-6.0

e delta_lg XH_ cntr_min

e delta_lg XH_ cntr_limit = 0.01d0

e delta_lg_XHe_cntr_max = 0.0

e delta_lg_XHe_cntr_min = -6.0
e delta_lg XHe_cntr_limit = 0.01d0

0.0d0

e delta_lg _XC_cntr_max

e delta_lg XC_cntr_min = -6.0d0
e delta_lg XC_cntr_limit = 0.01d0
As a second possibility, we adjusted the MLT option from

e MLT option = ’Mihalas’
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to
e MLT option = ’ML1’
Finally, we could adjust the MLT++ settings by commenting out

e gradT_excess_max_change = 0.001

A.5 Mass Loss

A.5.1 Hooks

MESA offers the possibility to use hooks to manipulate the program without the
need of manipulating and compiling the whole code. They can be introduced
at different parts during the evolution. All hooks are defined in the file
run_star_extras.f90, and have to be compiledE once before the program
execution.

A main part of this thesis was to manipulate the wind routine, which we did
using a hook. It is based on the Dutch wind scheme, however we introduced more

free parameters:

e The Vink scaling factor is now also available when the Dutch scheme is

applied.

e x ctrl(20) adjusts the temperature (in K) of the first jump. If it is < 0,
the jump-temperature is calculated using Eqn. [2.87]

e x ctrl(21) is the exponent « for the metallicity scaling ~ (Z/Z@)a of the

de Jager, Nieuwenhuijzen, and van der Hucht (1988) rates.

In the early phases of our work, we also created other hooks, for debugging and
as workarounds for some problems we have been able to fix later on. All hooks
except the modified wind were deactivated in the final calculations (compare also

the provided inlists).

A.5.2 Implicit Mass Loss at Critical Rotation

For many models at low metallicity that evolve close to critical rotation, we found

that the implicit mass loss was the best solution to keep the rotation subcritical.

1 Using the commands clean and mk
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If the rotation exceeds a specific value surf_w_div_w_crit_limit, the implicit
mass loss is applied.

It increases the mass loss by mdot_revise factor, until a value slightly smaller
than the above limit for the rotational speed is reached. It saves the last values of
M, when the rotation has been critical (subcritical) as Momani (Mlarge)y and checks

if they lie within the tolerance

<tol, (A.1)

with tolerance defined by the parameter surf w div_w crit_tol.
If the difference is larger than the tolerance, bisections are performed, until the

value lies within the tolerance. If

Q <Qimit (A.2)

M - Msmall

A <tol (A.3)

the mass loss M is applied.

The sum of mass loss increases and bisections must not exceed
max mdot_redo_cnt, otherwise the calculation is retried with smaller timesteps.

However, this condition can lead to severe problems if used in combination
with the general implicit wind (max_tries_for_implicit_wind# 0). The general
implicit wind alters the mass loss rate, already before the first change due to
critical rotation. It is not the explicit value any longer. As the conditions for
terminating the routine and not modifying the mass loss are different, this might
lead to a problematic situation, if the general implicit wind is slightly lower than

the explicit value, and thus the rotation rate too high:
1. The general implicit wind returns a value M # Megplicit, but < Qi
2. As Q < Qyimit, Mlmge = M is set.

3. As M # Megpiicit, the implicit mass loss for critical rotation alters M. Tt
retains the explicit mass loss M = Mexph-cit. However, this adjustment causes
Q > Quimit, and Msma” = M is set.

4. The implicit wind for critical rotation is again calculated.
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5. By coincidence, condition (A.1)) is fulfilled. In the following steps, the wind
is not adjusted. As the wind is not adjusted, €2 stays larger than .
Condition (A.2) thus cannot be fulfilled, and the calculations continues.

6. In all the following tries, the situation does not change.
7. After the maximum of tries, MESA retries with a smaller timestep.

In some cases, several retries occur, finally causing too small timesteps. The
simplest way to avoid this behaviour is to force the wind calculation to start with
the explicit value.

General implicit wind must not be used together with implicit rotational

enhancement!

A.6 Runtime analysis

MESA is partly multi-threaded as described by Paxton et al. (2011 their section
6.8) and Paxton et al. (2013, their section B.9). It uses algorithms that are thread-
save, such that the results are independent of the number of threads used. We
expect that the runtime decreases roughly linear (in log-log space) for increasing
number of threads assigned to the execution. The number of threads can be set
by using the system variable OMP_NUM_THREADS.

To obtain an impression of the optimum number of threads, we performed
an analysis of models with different masses and rotational velocities. From the
rotating 60M, model shown in Fig.[A.T] we can derive an optimum thread number
of 16. The trend is similar, independent of the rotational velocity and the initial
mass.

The runtime decreases by a factor of 2 for every increase of the number of
threads by a factor of 3 to 10. Different evolutionary stages lead to different
slopes. Especially, the pre MS seems to be more efficient using synchronisation
than later evolutionary stages. Compared to Paxton et al. (2013), the decrease in
runtime is on the same order of magnitude, but slightly less steep. This can be
explained by the different MESA version, differences in the specific models, and
different hardware.

The runtime decreases for up to 16 threads, which is the number we finally used
for all later runs. For even more threads, this trend reverses and the runtime

increases again. This can be explained by bottlenecks in memory, reading, and



135 Massive Star Evolution with MESA — Set-Up and Technical Aspects

log(t/s)
NS =
T T T
+
I
+ +
+ #
+ +
+ +
+ +
.
1 1

109(Nenreods)

Figure A.1: Runtime analysis for a rotating (2 = 0.4€Q.;+) 60Ms model. The four
different phases: pre MS, MS, , and until central C
exhaustion are shown. The slope was calculated by a fit for up to 16 threads and
varies between —0.37 and —0.62, depending on the evolutionary stage.

writing. Non-efficient synchronisation could be another issue. More detailed

studies would be required to find the exact reason.
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B IDL

B.1 Analysis of a Single Model

Before analysing the data, we convert them into IDL structures. This drastically
simplifies the following analysis, and accelerates the execution. The conversion

consists of two steps
e read all mesa reads all data from the model and profile files.

e find zones calculates additional properties. Especially, it defines the
(connected) zones for different mixing processes and burning strengths
relevant for the Kippenhahn diagram, but also specific times, such as the

ZAMS or the beginning of different burning stages.

These routines are based on the work of K. Zaidi (a summer student in the working-
group of J. Puls).
Together with Ferraro (2020), we programmed many routines to create specific

diagrams. The most important ones are

e abundance_evolution(multi_linear) creates a plot displaying the
evolution of central and surface abundances. The multi linear version

has different time axes for different evolutionary phases.
e hrd creates a Hertzsprung-Russel-diagram.
e kippenhahn( multi_linear): creates a Kippenhahn diagram.

In addition, we prepared debugging routines for several parameters, such as I'.,
M, and v,,;. To simplify plotting of specific parameters, Ferraro (2020) prepared
hpp and ppp.

For the analysis of specific models and comparisons presented in the thesis, we

programmed routines only designed for this specific purpose.
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B.2 Grid Analysis

To speed up the analysis of the different grids, we read the most important data
into a new IDL structure. It is split into progenitor properties, and the main

evolutionary data:
e grid_analysis
e grid_analysis_evolution

For the analysis, we prepared several routines to create specific diagrams:
e comp_hrds: HRD comparing the evolution of all models,

e core_and_final masses: effect of specific parameters on core and final

masses,
e all remnants: comparison of remnant masses,

e heger2003: plots similar to those of Heger et al. (2003)) displaying the

remnant or explosion type depending on metallicity and initial mass,

e all remnants_mrem_div_mstar: plot of  M,em/Msiar, relevant for

microlensing.



139 BIBLIOGRAPHY

Bibliography

Abbott, B. P., et al. 2017. “GW170817: Observation of Gravitational Waves from
a Binary Neutron Star Inspiral”. Phys.Rev.L 119, no. 16, 161101 (): 161101.

Abbott, B. P., et al. 2016. “Observation of Gravitational Waves from a Binary
Black Hole Merger”. Phys.Rev.L 116, no. 6, 061102 (): 061102.

Aerts, C. 2019. “Probing the interior physics of stars through asteroseismology”.
Preprint.

Alecian, E., et al. 2019. “Fossil magnetic fields in intermediate-mass and massive
stars”. In FAS Publications Series, 82:345-355. EAS Publications Series.

Asplund, M., N. Grevesse, and A. J. Sauval. 2005. “The Solar Chemical
Composition”. In Cosmic Abundances as Records of Stellar FEvolution and
Nucleosynthesis, ed. by III Barnes Thomas G. and Frank N. Bash, 336:25.

Astronomical Society of the Pacific Conference Series.

Asplund, Martin, et al. 2009. “The Chemical Composition of the Sun”. ARAA 47,
no. 1 (): 481-522.

Bagnulo, S., et al. 2020. “A search for strong magnetic fields in massive and very
massive stars in the Magellanic Clouds”. A&A 635, A163 (): A163.

Ballero, S. K., P. Kroupa, and F. Matteucci. 2007. “Testing the universal stellar
IMF on the metallicity distribution in the bulges of the Milky Way and M 31”.
A&A 467, no. 1 (): 117-121.

Belczynski, Krzysztof, et al. 2008. “Compact Object Modeling with the StarTrack
Population Synthesis Code”. ApJS 174, no. 1 (): 223-260.

Belczynski, Krzysztof, et al. 2010. “On the Maximum Mass of Stellar Black Holes”.
ApJ 714, no. 2 (): 1217-1226.



BIBLIOGRAPHY 140

Bjorklund, R., et al. 2020. “New predictions for radiation-driven, steady-state
mass-loss and wind-momentum from hot, massive stars I1. A grid of O-type stars
in the Galaxy and the Magellanic Clouds”. arXiv e-prints, arXiv:2008.06066 ():
arXiv:2008.06066.

Bjorkman, J. E., and J. P. Cassinelli. 1993. “Equatorial Disk Formation around
Rotating Stars Due to Ram Pressure Confinement by the Stellar Wind”. ApJ
409 (): 429.

Bohm-Vitense, E. 1958. “Uber die Wasserstoffkonvektionszone in Sternen
verschiedener Effektivtemperaturen und Leuchtkrafte. Mit 5 Textabbildungen”.
ZfA 46 (): 108.

Braithwaite, Jonathan, and Henk C. Spruit. 2017. “Magnetic fields in non-
convective regions of stars”. Royal Society Open Science 4, no. 2, 160271 ():
160271.

Bressan, Alessandro, et al. 2012. “PARSEC: stellar tracks and isochrones with the
PAdova and TRieste Stellar Evolution Code”. MNRAS 427, no. 1 (): 127-145.

Bromm, Volker, Rolf P. Kudritzki, and Abraham Loeb. 2001. “Generic Spectrum
and JTonization Efficiency of a Heavy Initial Mass Function for the First Stars”.
ApJ 552, no. 2 (): 464-472.

Brott, I., et al. 2011. “Rotating massive main-sequence stars. I. Grids of
evolutionary models and isochrones”. A&A 530, A115 (): A115.

Buchler, J. R., and W. R.. Yueh. 1976. “Compton scattering opacities in a partially
degenerate electron plasma at high temperatures”. ApJ 210 (): 440-446.

Cantiello, Matteo, and Jonathan Braithwaite. 2019. “Envelope Convection, Surface
Magnetism, and Spots in A and Late B-type Stars”. ApJ 883, no. 1, 106 (): 106.

Cassisi, S., et al. 2007. “Updated Electron-Conduction Opacities: The Impact on
Low-Mass Stellar Models”. ApJ 661 (): 1094-1104.

Castor, J. I., D. C. Abbott, and R. I. Klein. 1975. “Radiation-driven winds in Of
stars.” ApJ 195 (): 157-174.

Castor, John L. 1974. “On the force associated with absorption of spectral line
radiation”. MNRAS 169 (): 279-306.

Castro, N., et al. 2014. “The spectroscopic Hertzsprung-Russell diagram of
Galactic massive stars”. A&A 570, L13 (): L13.



141 BIBLIOGRAPHY

Chaboyer, B., and J. -P. Zahn. 1992. “Effect of horizontal turbulent diffusion on
transport by meridional circulation.” A&A 253 (): 173-177.

Chamel, N., et al. 2013. “On the maximum mass of Neutron Stars”. International

Journal of Modern Physics E 22, no. 07 (): 1330018.

Chandrasekhar, S. 1931. “The Maximum Mass of Ideal White Dwarfs”. ApJ 74
(): 81.

Chandrasekhar, Subrahmanyan. 1961. Hydrodynamic and hydromagnetic stability.

Charbonnel, Corinne, and Suzanne Talon. 2005. “Influence of Gravity Waves on
the Internal Rotation and Li Abundance of Solar-Type Stars”. Science 309, no.
5744 (): 2189-2191.

Chatzopoulos, E., and J. Craig Wheeler. 2012. “Effects of Rotation on the
Minimum Mass of Primordial Progenitors of Pair-instability Supernovae”. ApJ
748, no. 1, 42 (): 42.

Chen, Ke-6g, Alexander Heger, and Ann S. Almgren. 2013. “Numerical
approaches for multidimensional simulations of stellar explosions”. Astronomy
and Computing 3 (): 70-T8.

Chen, Yang, et al. 2014. “Improving PARSEC models for very low mass stars”.
MNRAS 444, no. 3 (): 2525-2543.

Choi, Jieun, et al. 2016. “Mesa Isochrones and Stellar Tracks (MIST). I. Solar-
scaled Models”. ApJ 823, no. 2, 102 (): 102.

Chugunov, A. 1., H. E. Dewitt, and D. G. Yakovlev. 2007. “Coulomb tunneling for
fusion reactions in dense matter: Path integral MonteCarlo versus mean field”.
Phys.Rev.D 76, no. 2, 025028 (): 025028.

Claret, Antonio, and Guillermo Torres. 2019. “The Dependence of Convective
Core Overshooting on Stellar Mass: Reality Check and Additional Evidence”.
ApJ 876, no. 2, 134 (): 134.

Cohen, Martin. 1988. In darkness born. The story of star formation.

Cox, J. P., and R. T. Giuli. 1968. Principles of stellar structure Vol. 2 -
Applications to Stars.

Crowther, Paul A. 2008. “Properties of Wolf-Rayet Stars”. In Massive Stars as
Cosmic Engines, ed. by F. Bresolin, P. A. Crowther, and J. Puls, 250:47-62.
[TAU Symposium.



BIBLIOGRAPHY 142

Cyburt, R. H., et al. 2010. “The JINA REACLIB Database: Its Recent Updates
and Impact on Type-I X-ray Bursts”. ApJS 189 (): 240-252.

de Jager, C., H. Nieuwenhuijzen, and K. A. van der Hucht. 1988. “Mass loss rates
in the Hertzsprung-Russell diagram.” A&AS 72 (): 259-289.

de Koter, A. 2008. “Observational Constraints on Mass Loss and Evolution of
Massive Stars”. In Mass Loss from Stars and the Evolution of Stellar Clusters,
ed. by A. de Koter, L. J. Smith, and Laurens B. F. M. Waters, 388:87.

Astronomical Society of the Pacific Conference Series.

Denissenkov, Pavel A., and Marc Pinsonneault. 2007. “A Revised Prescription for
the Tayler-Spruit Dynamo: Magnetic Angular Momentum Transport in Stars”.
ApJ 655, no. 2 (): 1157-1165.

Dominik, C. 1990. “Dust Driven Mass Lost in the HRD.” Reviews in Modern
Astronomy 3 (): 199-208.

ud-Doula, Asif, and Stanley P. Owocki. 2002. “Dynamical Simulations of
Magnetically Channeled Line-driven Stellar Winds. I. Isothermal, Nonrotating,
Radially Driven Flow”. ApJ 576, no. 1 (): 413-428.

ud-Doula, Asif, Stanley P. Owocki, and Richard H. D. Townsend. 2008.
“Dynamical simulations of magnetically channelled line-driven stellar winds -
I1. The effects of field-aligned rotation”. MNRAS 385, no. 1 (): 97-108.

— . 2009. “Dynamical simulations of magnetically channelled line-driven stellar
winds - ITI. Angular momentum loss and rotational spin-down”. MNRAS 392,
no. 3 (): 1022-1033.

Duncan, Robert C., and Christopher Thompson. 1992. “Formation of Very
Strongly Magnetized Neutron Stars: Implications for Gamma-Ray Bursts”.
ApJL 392 (): L9.

Eddington, A. S. 1926. The Internal Constitution of the Stars.

Eggenberger, P., A. Maeder, and G. Meynet. 2005. “Stellar evolution with rotation
and magnetic fields. IV. The solar rotation profile”. A&A 440, no. 1 (): L9-L12.

Ekstrom, S., et al. 2012. “Grids of stellar models with rotation. I. Models from 0.8
to 120 Mg, at solar metallicity (Z = 0.014)”. A&A 537, A146 (): A146.

Ekstrom, S., et al. 2020. “Open problems in high-mass stellar evolution”. In
Proceedings of the conference Stars and their Variability Observed from Space,
ed. by C. Neiner et al., 223-228.



143 BIBLIOGRAPHY

Eldridge, J. J., and J. S. Vink. 2006. “Implications of the metallicity dependence
of Wolf-Rayet winds”. A&A 452, no. 1 (): 295-301.

Esquivel, A., and A. C. Raga. 2007. “Radiation-driven collapse of autogravitating
neutral clumps”. MNRAS 377, no. 1 (): 383-390.

Euler, M. 1757. “Principes généraux du mouvement des fluides”. http : / /
eulerarchive.maa.org//docs/originals/E226.pdf, Mémoires de l'académie
des sciences de Berlin 11: 274-315.

Farrell, Eoin J., et al. 2020. “The uncertain masses of progenitors of core-collapse
supernovae and direct-collapse black holes”. MNRAS 494, no. 1 (): L53-L58.

Feldmeier, A. 1993. “Zeitabhédngige Struktur und Energietransfer der Winde

heifler, massereicher Sterne”. PhD thesis, Ludwig-Maximilians-Universitét.
Ferguson, J. W., et al. 2005. “Low-Temperature Opacities”. ApJ 623 (): 585-596.

Ferrario, Lilia, and D. T. Wickramasinghe. 2005. “Magnetic fields and rotation in
white dwarfs and neutron stars”. MNRAS 356, no. 2 (): 615-620.

Ferrario, Lilia, et al. 2009. “The origin of magnetism on the upper main sequence”.
MNRAS 400, no. 1 (): L71-L74.

Ferraro, Alex. 2020. “Massive Binary evolution with MESA: Interactions on the
Main Sequence”. MA thesis, LMU Miinchen.

Fields, C. E., and S. M. Couch. 2020. “On The Development of
Multidimensional Progenitor Models For Core-collapse Supernovae”. arXiv e-
prints, arXiv:2008.04266 (): arXiv:2008.04266.

Fricke, K. 1968. “Instabilitdt stationérer Rotation in Sternen”. ZfA 68 (): 317.

Friend, David B., and David C. Abbott. 1986. “The Theory of Radiatively Driven
Stellar Winds. III. Wind Models with Finite Disk Correction and Rotation”.
ApJ 311 (): 701.

Fuller, G. M., W. A. Fowler, and M. J. Newman. 1985. “Stellar weak interaction
rates for intermediate-mass nuclei. IV - Interpolation procedures for rapidly

varying lepton capture rates using effective log (ft)-values”. ApJ 293 (): 1-16.

Gagnier, D., et al. 2019. “Critical angular velocity and anisotropic mass loss of
rotating stars with radiation-driven winds”. A&A 625, A88 (): A88.

Girart, Josep M., et al. 2009. “Magnetic Fields in the Formation of Massive Stars”.
Science 324 (5933): 1408-1411.


http://eulerarchive.maa.org//docs/originals/E226.pdf
http://eulerarchive.maa.org//docs/originals/E226.pdf

BIBLIOGRAPHY 144

Glebbeek, E., et al. 2009. “The evolution of runaway stellar collision products”.
A&A 497, no. 1 (): 255-264.

Goldreich, Peter, and Gerald Schubert. 1967. “Differential Rotation in Stars”. ApJ
150 (): 571.

Green, Anne M. 2016. “Microlensing and dynamical constraints on primordial
black hole dark matter with an extended mass function”. Phys.Rev.D 94, no. 6,
063530 (): 063530.

Groh, J. H., et al. 2019. “Grids of stellar models with rotation. IV. Models from
1.7 to 120 Mg, at a metallicity Z = 0.0004”. A&A 627, A24 (): A24.

Groh, Jose H., et al. 2014. “The evolution of massive stars and their spectra - I.

A non-rotating 60 Mar from the zero-age main sequence to the pre-supernova
stage”. AEA 564:A30.

Grunhut, J. H., G. A. Wade, and MiMeS Collaboration. 2012. “The incidence of

magnetic fields in massive stars: An overview of the MiMeS survey component”.

Hale, George E. 1908. “On the Probable Existence of a Magnetic Field in Sun-
Spots”. ApJ 28 (): 315.

Heger, A., N. Langer, and S. E. Woosley. 2000. “Presupernova Evolution of
Rotating Massive Stars. I. Numerical Method and Evolution of the Internal
Stellar Structure”. ApJ 528, no. 1 (): 368-396.

Heger, A., and S. E. Woosley. 2002. “The Nucleosynthetic Signature of Population
[I1”. ApJ 567, no. 1 (): 532-543.

Heger, A., S. E. Woosley, and H. C. Spruit. 2005. “Presupernova Evolution of
Differentially Rotating Massive Stars Including Magnetic Fields”. ApJ 626, no.
1 (): 350-363.

Heger, A., et al. 2003. “How Massive Single Stars End Their Life”. ApJ 591, no.
1 (): 288-300.

Higgins, Erin R., and Jorick S. Vink. 2020. “A theoretical investigation of
the Humphreys-Davidson limit at high and low metallicity”. arXww e-prints,
arXiv:2002.07204 (): arXiv:2002.07204.

Hirschi, R., A. Maeder, and G. Meynet. 2004. “Dynamical Shear Instability”.
In Stellar Rotation, ed. by Andre Maeder and Philippe Eenens, 215:510. TAU

Symposium.



145 BIBLIOGRAPHY

Huang, W., and D. R. Gies. 2006. “Stellar Rotation in Young Clusters. I. Evolution
of Projected Rotational Velocity Distributions”. ApJ 648, no. 1 (): 580-590.

Hubrig, S. 2008. “Magnetic fields in massive stars”. In Revista Mezicana de
Astronomia y Astrofisica Conference Series, 33:26-28. Revista Mexicana de

Astronomia y Astrofisica Conference Series.

Humphreys, Roberta M., and Kris Davidson. 1994. “The Luminous Blue Variables:
Astrophysical Geysers”. PASP 106 (): 1025.

Iglesias, C. A., and F. J. Rogers. 1993. “Radiative opacities for carbon- and oxygen-
rich mixtures”. ApJ 412 (): 752-760.

— . 1996. “Updated Opal Opacities”. ApJ 464 (): 943.
Itoh, N., et al. 1996. “Neutrino Energy Loss in Stellar Interiors. VII. Pair, Photo-,

Plasma, Bremsstrahlung, and Recombination Neutrino Processes”. ApJS 102 ():
411.

Josselin, E., and B. Plez. 2007. “Atmospheric dynamics and the mass loss process
in red supergiant stars”. A&A 469, no. 2 (): 671-680.

Kaiser, Etienne A., et al. 2020. “Relative Importance of Convective Uncertainties
in Massive Stars”. MNRAS ().

Keszthelyi, Zsolt. 2015. “The Impact of Mass Loss on the Early Evolution of
Massive Stars”. M.Sc. Thesis, LMU Miinchen.

Keszthelyi, Z., et al. 2020. “The effects of surface fossil magnetic fields on
massive star evolution - II. Implementation of magnetic braking in MESA and
implications for the evolution of surface rotation in OB stars”. MNRAS 493, no.
1 (): 518-535.

Kippenhahn, R. 1974. “Circulation and Mixing”. In Late Stages of Stellar
FEvolution, ed. by R. J. Tayler and J. E. Hesser, 66:20. IAU Symposium.

Kippenhahn, R., G. Ruschenplatt, and H. -C. Thomas. 1980. “The time scale of
thermohaline mixing in stars”. A&A 91, no. 1 (): 175-180.

Kippenhahn, R., and H. -C. Thomas. 1970. “A Simple Method for the Solution of
the Stellar Structure Equations Including Rotation and Tidal Forces”. In TAU
Collogq. 4: Stellar Rotation, ed. by Arne Slettebak, 20.

Kippenhahn, Rudolf, Alfred Weigert, and Achim Weiss. 2012. Stellar Structure

and Evolution.



BIBLIOGRAPHY 146

Kohler, K., et al. 2015. “The evolution of rotating very massive stars with LMC
composition”. A&A 573, A71 (): AT1.

Kroupa, Pavel. 2002. “The Initial Mass Function of Stars: Evidence for Uniformity
in Variable Systems”. Science 295, no. 5552 (): 82-91.

Lamers, Henny J. G. L. M., Theodore P. Snow, and Douglas M. Lindholm. 1995.
“Terminal Velocities and the Bistability of Stellar Winds”. ApJ 455 (): 269.

Landau, L. D., and E. M. Lifshitz. 1987. Fluid Mechanics. 2nd English Edition.

Vol. 6. Pergamon Press.

Langanke, K., and G. Martinez-Pinedo. 2000. “Shell-model calculations of stellar
weak interaction rates: II. Weak rates for nuclei in the mass range A = 45 — 65

in supernovae environments”. Nuclear Physics A 673 (): 481-508.

Langer, N. 1998. “Coupled mass and angular momentum loss of massive main
sequence stars”. A&A 329 (): 551-558.

Langer, N., M. F. El Eid, and K. J. Fricke. 1985. “Evolution of massive stars with
semiconvective diffusion”. A&A 145, no. 1 (): 179-191.

Langer, N., K. J. Fricke, and D. Sugimoto. 1983. “Semiconvective diffusion and
energy transport”. A&A 126, no. 1 (): 207.

Lee, C. -H., et al. 2015. “Microlensing events from the 11-year Observations of the
Wendelstein Calar Alto Pixellensing Project”. ApJ 806, no. 2, 161 (): 161.

Leitherer, Claus, Carmelle Robert, and Laurent Drissen. 1992. “Deposition of
Mass, Momentum, and Energy by Massive Stars into the Interstellar Medium?”.
ApJ 401 (): 596.

Levesque, Emily M., et al. 2005. “The Effective Temperature Scale of Galactic
Red Supergiants: Cool, but Not As Cool As We Thought”. ApJ 628, no. 2 ():
973-985.

Levesque, Emily M., et al. 2006. “The Effective Temperatures and Physical
Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity”.
ApJ 645, no. 2 (): 1102-1117.

Li, Yan, Xing-hao Chen, and Hai-liang Chen. 2019. “Overshooting in the Core
Helium-burning Stage of a 30 M , Star Using the k-w Model”. ApJ 870, no. 2,
77 (): T7.



147 BIBLIOGRAPHY

Liu, Junhao, et al. 2020. “Magnetic Fields in the Early Stages of Massive Star
Formation as Revealed by ALMA”. The Astrophysical Journal 895, no. 2 ():
142.

Lucy, L. B., and P. M. Solomon. 1970. “Mass Loss by Hot Stars”. ApJ 159 (): 879.

MacDonald, James, and D. J. Mullan. 2004. “Magnetic fields in massive stars:
dynamics and origin”. Monthly Notices of the Royal Astronomical Society 348,
no. 2 (): 702-716.

Maeder, A., and G. Meynet. 2003. “Stellar evolution with rotation and magnetic
fields. 1. The relative importance of rotational and magnetic effects”. A&A 411
(): 543-552.

— .2004. “Stellar evolution with rotation and magnetic fields. II. General equations
for the transport by Tayler-Spruit dynamo”. A&A 422 (): 225-237.

— . 2005. “Stellar evolution with rotation and magnetic fields. III. The interplay
of circulation and dynamo”. A&A 440, no. 3 (): 1041-1049.

— . 2000. “Stellar evolution with rotation. VI. The Eddington and Omega -limits,
the rotational mass loss for OB and LBV stars”. A&A 361 (): 159-166.

Maeder, André. 2009. Physics, Formation and Evolution of Rotating Stars.
Springer, Berlin, Heidelberg.

Marigo, Paola, et al. 2017. “A New Generation of PARSEC-COLIBRI Stellar
Isochrones Including the TP-AGB Phase”. ApJ 835, no. 1, 77 (): 77.

Markova, N., and J. Puls. 2008. “Bright OB stars in the Galaxy. IV. Stellar and
wind parameters of early to late B supergiants”. A&A 478, no. 3 (): 823-842.

Martins, F., and A. Palacios. 2013. “A comparison of evolutionary tracks for single
Galactic massive stars”. A&A 560, A16 (): Al6.

Massey, Philip, and Kate Anne Evans. 2016. “The Red Supergiant Content of
M31*”. ApJ 826, no. 2, 224 (): 224.

Massey, Philip, and K. A. G. Olsen. 2003. “The Evolution of Massive Stars. I. Red
Supergiants in the Magellanic Clouds”. AJ 126, no. 6 (): 2867-2886.

Matteucci, F., and A. Tornambe. 1987. “Chemical evolution of elliptical galaxies”.

A&A 185, no. 1 (): 51-60.

Mauron, N., and E. Josselin. 2011. “The mass-loss rates of red supergiants and
the de Jager prescription”. A&A 526, A156 (): A156.



BIBLIOGRAPHY 148

Meynet, G., and A. Maeder. 1997. “Stellar evolution with rotation. I. The
computational method and the inhibiting effect of the p-gradient.” A&A 321 ():
465-476.

— . 2003. “Stellar evolution with rotation. X. Wolf-Rayet star populations at solar
metallicity”. A&A 404 (): 975-990.

Meynet, Georges, and André Maeder. 2017. “Supernovae from Rotating Stars”. In
Handbook of Supernovae, ed. by Athem W. Alsabti and Paul Murdin, 601.

Mihalas, Dimitri. 1978. Stellar atmospheres.

Najarro, F., et al. 2008. “Tracking the Clumping in OB Stars from UV to radio”.
In Clumping in Hot-Star Winds, ed. by Wolf-Rainer Hamann, Achim Feldmeier,
and Lidia M. Oskinova, 43.

Nieuwenhuijzen, H., and C. de Jager. 1990. “Parametrization of stellar rates of
mass loss as functions of the fundamental stellar parameters M, L, and R.”
A&A 231 (): 134-136.

Nieva, M. -F., and N. Przybilla. 2012. “Present-day cosmic abundances. A
comprehensive study of nearby early B-type stars and implications for stellar
and Galactic evolution and interstellar dust models”. A&A 539, A143 (): A143.

Niikura, Hiroko, et al. 2019. “Microlensing constraints on primordial black holes
with Subaru/HSC Andromeda observations”. Nature Astronomy 3 (): 524-534.

Nugis, T., and H. J. G. L. M. Lamers. 2000. “Mass-loss rates of Wolf-Rayet stars
as a function of stellar parameters”. A&A 360 (): 227-244.

Oda, T., et al. 1994. “Rate Tables for the Weak Processes of sd-Shell Nuclei in
Stellar Matter”. Atomic Data and Nuclear Data Tables 56 (): 231-403.

Owocki, S. P., J. I. Castor, and G. B. Rybicki. 1988. “Time-dependent Models of
Radiatively Driven Stellar Winds. I. Nonlinear Evolution of Instabilities for a
Pure Absorption Model”. Astrophysical Journal 335:914-930.

Owocki, S. P., S. R. Cranmer, and K. G. Gayley. 1996. “Inhibition FO Wind
Compressed Disk Formation by Nonradial Line-Forces in Rotating Hot-Star
Winds”. ApJL 472 (): L115.

Palau, A., et al. 2020. “Fragmentation of molecular clouds: the role of magnetic
field”. In Contributions to the XIV.0 Scientific Meeting (virtual) of the Spanish
Astronomical Society, 172.



149 BIBLIOGRAPHY

Pastorelli, Giada, et al. 2020. “Constraining the thermally pulsing asymptotic giant
branch phase with resolved stellar populations in the Large Magellanic Cloud”.
MNRAS 498, no. 3 (): 3283-3301.

Pastorelli, Giada, et al. 2019. “Constraining the thermally pulsing asymptotic giant
branch phase with resolved stellar populations in the Small Magellanic Cloud”.
MNRAS 485, no. 4 (): 5666-5692.

Pauldrach, A. W. A., and J. Puls. 1990. “Radiation-driven winds of hot luminous
stars. VIIL. The bistable wind of the luminous blue variable P Cygni (B1 Ia+).”
A&A 237 (): 409.

Pauldrach, A., J. Puls, and R. P. Kudritzki. 1986. “Radiation-driven winds of hot
luminous stars. Improvements of the theory and first results.” A&A 164 (): 86—
100.

Paxton, Bill, et al. 2019. “Modules for Experiments in Stellar Astrophysics
(MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and
Energy Conservation”. ApJS 243, no. 1, 10 (): 10.

Paxton, B., et al. 2011. “Modules for Experiments in Stellar Astrophysics
(MESA)”. ApJS 192, 3 (): 3.

Paxton, B., et al. 2015. “Modules for Experiments in Stellar Astrophysics (MESA):
Binaries, Pulsations, and Explosions”. ApJS 220, 15 (): 15.

Paxton, B., et al. 2018. “Modules for Experiments in Stellar Astrophysics (MESA):
Convective Boundaries, Element Diffusion, and Massive Star Explosions”. ApJS

234, 34 (): 34.

Paxton, B., et al. 2013. “Modules for Experiments in Stellar Astrophysics (MESA):
Planets, Oscillations, Rotation, and Massive Stars”. ApJS 208, 4 (): 4.

Petit, V., et al. 2017. “Magnetic massive stars as progenitors of ‘heavy’ stellar-mass
black holes”. MNRAS 466, no. 1 (): 1052-1060.

Petit, V., et al. 2012. “Magnetospheres of Massive Stars Across the EM Spectrum”.
In Proceedings of a Scientific Meeting in Honor of Anthony F. J. Moffat, ed. by

L. Drissen et al., 465:48. Astronomical Society of the Pacific Conference Series.

Petrov, Blagovest, Jorick S. Vink, and Gotz Gréfener. 2014. “On the Ha behaviour
of blue supergiants: rise and fall over the bi-stability jump”. A&A 565, A62 ():
AG62.



BIBLIOGRAPHY 150

— . 2016. “Two bi-stability jumps in theoretical wind models for massive stars and
the implications for luminous blue variable supernovae”. MNRAS 458, no. 2 ():
1999-2011.

Petrovic, J., et al. 2005. “Which massive stars are gamma-ray burst progenitors?”
A&A 435, no. 1 (): 247-259.

Pols, O. R., et al. 1995. “Approximate input physics for stellar modelling”.
MNRAS 274 (): 964-974.

Poniatowski, L.G., et al. 2012. “Wind models of dynamically inflated classical
Wolf-Rayet stars”. Preprint.

Potekhin, A. Y., and G. Chabrier. 2010. “Thermodynamic Functions of
Dense Plasmas: Analytic Approximations for Astrophysical Applications”.
Contributions to Plasma Physics 50 (): 82-87.

Prandtl, L. 1925. “7. Bericht iiber Untersuchungen zur ausgebildeten Turbulenz”.
Zeitschrift Angewandte Mathematik und Mechanik 5, no. 2 (): 136-139.

Przybilla, N., et al. 2013. “Hot stars and cosmic abundances”. In FAS Publications
Series, ed. by G. Alecian et al., 63:13-23. EAS Publications Series.

Puls, J., U. Springmann, and M. Lennon. 2000. “Radiation driven winds of hot
luminous stars. XIV. Line statistics and radiative driving”. A&AS 141 (): 23-64.

Puls, Joachim, Jorick S. Vink, and Francisco Najarro. 2008. “Mass loss from hot
massive stars”. A&A Rev. 16, no. 3 (): 209-325.

Reimers, D. 1975. “Circumstellar absorption lines and mass loss from red giants.”
Memoires of the Societe Royale des Sciences de Liege 8 (): 369-382.

— . 1977. “On the absolute scale of mass-loss in red giants. I. Circumstellar
absorption lines in the spectrum of the visual companion of alpha 'Her.” A&A
61 (): 217-224.

Renzini, Alvio, and Luca Ciotti. 1993. “Transverse Dissections of the Fundamental
Planes of Elliptical Galaxies and Clusters of Galaxies”. ApJL 416 (): L49.

Rezzolla, Luciano, Elias R. Most, and Lukas R. Weih. 2018. “Using Gravitational-
wave Observations and Quasi-universal Relations to Constrain the Maximum
Mass of Neutron Stars”. The Astrophysical Journal 852, no. 2 (): L25.

Riffeser, A., S. Seitz, and R. Bender. 2008. “The M31 Microlensing Event
WeCAPP-GL1/POINT-AGAPE-S3: Evidence for a MACHO Component in the
Dark Halo of M317” ApJ 684, no. 2 (): 1093-1109.



151 BIBLIOGRAPHY

Riffeser, A., et al. 2006. “Microlensing toward Crowded Fields: Theory and
Applications to M31”. ApJS 163, no. 2 (): 225-269.

Rogers, F. J., and A. Nayfonov. 2002. “Updated and Expanded OPAL Equation-
of-State Tables: Implications for Helioseismology”. ApJ 576, no. 2 (): 1064-1074.

Saglia, R. P.; et al. 2018. “Stellar populations of the central region of M 31”7. A&A
618, A156 (): A156.

Saglia, R. P., et al. 2010. “The old and heavy bulge of M 31 . I. Kinematics and
stellar populations”. A&A 509, A61 (): A61.

Sakon, Itsuki, et al. 2010. “Dust formation by massive stars studied by infrared
observations with AKARI/IRC and Subaru/COMICS”. In Astronomical Society
of India Conference Series, 1:49-55. Astronomical Society of India Conference

Series.

Salaris, Maurizio, and Santi Cassisi. 2017. “Chemical element transport in stellar
evolution models”. Royal Society Open Science 4, no. 8, 170192 (): 170192.

Salpeter, Edwin E. 1955. “The Luminosity Function and Stellar Evolution.” ApJ
121 (): 161.

Sana, H., et al. 2012. “Binary Interaction Dominates the Evolution of Massive
Stars”. Science 337, no. 6093 (): 444.

Saumon, D., G. Chabrier, and H. M. van Horn. 1995. “An Equation of State for
Low-Mass Stars and Giant Planets”. ApJS 99 (): 713.

Schaerer, D., and A. Maeder. 1992. “Basic relations between physical parameters
of Wolf-Rayet stars”. A&A 263, no. 1 (): 129-136.

Schaller, G., et al. 1992. “New grids of stellar models from 0.8 to 120 M _solar at
7=0.020 and Z=0.001". A&AS 96 (): 269.

Schneider, F. R. N., et al. 2020. “Long-term evolution of a magnetic massive merger
product”. MNRAS 495, no. 3 (): 2796-2812.

Schneider, Fabian R. N.; et al. 2019. “Stellar mergers as the origin of magnetic
massive stars”. Nature 574, no. 7777 (): 211-214.

Schootemeijer, A., et al. 2019. “Constraining mixing in massive stars in the Small

Magellanic Cloud”. A&A 625, A132 (): A132.

Schroder, K. -P., and M. Cuntz. 2005. “A New Version of Reimers’ Law of Mass
Loss Based on a Physical Approach”. ApJL 630, no. 1 (): L73-L76.



BIBLIOGRAPHY 152

Sobolev, V. V. 1947. Moving envelopes of stars. Leningrad: Leningrad State
University (Englische Ubersetzung: Cambridge: Harvard University Press,
1960).

Spera, Mario, Michela Mapelli, and Alessandro Bressan. 2015. “The mass spectrum
of compact remnants from the PARSEC stellar evolution tracks”. MNRAS 451,
no. 4 (): 4086-4103.

Spruit, H. C. 1999. “Differential rotation and magnetic fields in stellar interiors”.
A&A 349 (): 189-202.

— . 2006. “Magnetic instability in a differentially rotating star”. arXiv e-prints,
astro-ph/0607164 (): astro-ph/0607164.

Stephens, Andrew W., et al. 2003. “The Stellar Content of the Bulge of M31”.
The Astronomical Journal 125, no. 5 (): 2473-2493.

Suijs, M. P. L., et al. 2008. “White dwarf spins from low-mass stellar evolution
models”. A&A 481, no. 3 (): L87-1.90.

Sundqvist, J. O., et al. 2019. “New predictions for radiation-driven, steady-state
mass-loss and wind-momentum from hot, massive stars. I. Method and first
results”. A&A 632, A126 (): A126.

Sweet, P. A. 1950. “The importance of rotation in stellar evolution”. MNRAS 110
(): 548.

Tang, Jing, et al. 2014. “New PARSEC evolutionary tracks of massive stars at
low metallicity: testing canonical stellar evolution in nearby star-forming dwarf
galaxies”. MNRAS 445, no. 4 (): 4287-4305.

Thomas, J., et al. 2011. “Dynamical masses of early-type galaxies: a comparison
to lensing results and implications for the stellar initial mass function and the
distribution of dark matter”. MNRAS 415, no. 1 (): 545-562.

Thompson, Christopher, and Robert C. Duncan. 1995. “The soft gamma repeaters
as very strongly magnetized neutron stars - [. Radiative mechanism for
outbursts”. MNRAS 275, no. 2 (): 255-300.

Timmes, F. X., and F. Douglas Swesty. 2000. “The Accuracy, Consistency, and
Speed of an Electron-Positron Equation of State Based on Table Interpolation
of the Helmholtz Free Energy”. ApJS 126, no. 2 (): 501-516.

Timmes, F. X., S. E. Woosley, and Thomas A. Weaver. 1996. “The Neutron Star
and Black Hole Initial Mass Function”. ApJ 457 (): 834.



153 BIBLIOGRAPHY

Tremblay, P.-E., et al. 2015. “ON THE EVOLUTION OF MAGNETIC WHITE
DWARFS”. The Astrophysical Journal 812, no. 1 (): 19.

Tumlinson, J., J. M. Shull, and A. Venkatesan. 2002. “Cosmological Reionization
by the First Stars: Evolving Spectra of Population I11”. In Hot Star Workshop
III: The FEarliest Phases of Massive Star Birth, ed. by P. Crowther, 267:433.

Astronomical Society of the Pacific Conference Series.

Turner, David G. 1996. “The Progenitors of Classical Cepheid Variables”. JRASC
90 (): 82.

van Genderen, A. M., and P. S. The. 1984. “Characteristics and Interpretation of
the Photometric Variability of Eta-Carinae and its Nebula”. SSR 39, no. 3 ():
317-373.

van Loon, J. Th. 2006. “On the metallicity dependence of the winds from red
supergiants and Asymptotic Giant Branch stars”. In Stellar Fvolution at Low
Metallicity: Mass Loss, Fxplosions, Cosmology, ed. by Henny J. G. L. M. Lamers

et al., 353:211. Astronomical Society of the Pacific Conference Series.

van Loon, J. Th., et al. 2005. “An empirical formula for the mass-loss rates of dust-

enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars”.
A&A 438, no. 1 (): 273-289.

Vink, Jorick S.; A. de Koter, and H. J. G. L. M. Lamers. 2001. “Mass-loss
predictions for O and B stars as a function of metallicity”. A&A 369 (): 574-588.

Wade, G. A., et al. 2016. “The MiMeS survey of magnetism in massive stars:
introduction and overview”. MNRAS 456, no. 1 (): 2-22.

Wade, Gregg A., et al. 2009. “The MiMeS project: magnetism in massive stars”.
In Cosmic Magnetic Fields: From Planets, to Stars and Galaxies, ed. by Klaus
G. Strassmeier, Alexander G. Kosovichev, and John E. Beckman, 259:333-338.
AU Symposium.

Wade, Gregg A., et al. 2011. “The MiMeS project: overview and current status”.
In Active OB Stars: Structure, Evolution, Mass Loss, and Critical Limits, ed. by
Coralie Neiner et al., 272:118-123. TAU Symposium.

Wagle, Gururaj A., et al. 2019. “Type IIP Supernova Progenitors and Their
Explodability. I. Convective Overshoot, Blue Loops, and Surface Composition”.
AplJ 886, no. 1, 27 (): 27.

Wambsganss, Joachim. 2006. “Gravitational Microlensing”. arXiv e-prints, astro-
ph/0604278 (): astro—ph/0604278.



BIBLIOGRAPHY 154

Woosley, S. E. 2019. “The Evolution of Massive Helium Stars, Including Mass
Loss”. ApJ 878, no. 1, 49 (): 49.

Woosley, S. E., A. Heger, and T. A. Weaver. 2002. “The evolution and explosion
of massive stars”. Reviews of Modern Physics T4, no. 4 (): 1015-1071.

Woosley, S. E.; N. Langer, and T. A. Weaver. 1995. “The Presupernova Evolution
and Explosion of Helium Stars That Experience Mass Loss”. ApJ 448 (): 315.

Wu, Tao, and Yan Li. 2019. “High-precision Asteroseismology in a Slowly Pulsating
B Star: HD 50230”. ApJ 881, no. 1, 86 (): 86.

Yoshida, Takashi, et al. 2019. “One-, Two-, and Three-dimensional Simulations
of Oxygen-shell Burning Just before the Core Collapse of Massive Stars”. ApJ
881, no. 1, 16 (): 16.

Zahn, J. -P. 1992. “Circulation and turbulence in rotating stars.” A&A 265 ():
115-132.

Zahn, J. -P., A. S. Brun, and S. Mathis. 2007. “On magnetic instabilities and
dynamo action in stellar radiation zones”. A&A 474, no. 1 (): 145-154.

Zhang, Qizhou. 2020. “Magnetic fields and massive star formation”. In [AU
General Assembly, 141-141.

Zoccali, Manuela, et al. 2000. “The Initial Mass Function of the Galactic Bulge
down to ~0.15 Mgee”. ApJ 530, no. 1 (): 418-428.



155 Acknowledgements

Acknowledgements

I owe my greatest gratitude to Jo Puls, for the supervision of this thesis. Thank
you for offering the thesis to me, for all the instructive discussions, for all questions,
comments and improvements from you. It was a very educational and inspiring
time working with you. Your feedback on my scientific work and especially our
personal relationship gave me more than I ever could expect from a supervision
at university. It was an honour to be your student!

[ am also heartily grateful to Arno Riffeser, for being my second supervisor. Your
discussions about microlensing and questions to my results throughout the thesis
helped me a lot in improving the thesis. Thank you also for the computational
time on your machine, that accelerated my calculations in the beginning.

[ would like to thank you both, Jo and Arno, for allowing me to go
on Wendelstein, and getting an insight into observations and corresponding
preparation. It has been a very instructive night up on the mountain, and I
really enjoyed the time with all of you.

This thesis wouldn’t have been that much fun without Alex Ferraro. Thank
you for all the discussions, ideas, and conversations. It has been great working
together with you, no matter if next to each other in the same office, or via Zoom.
I also want to thank you for the great friendship.

I want also to thank Zsolt Keszthelyi, for enlightening discussions about MESA,
and hints about relevant papers.

Also, I have to thank Eva Sextl for the helpful discussion about MESA and
possible pitfalls, such that I could avoid many of them.

I appreciate the interesting conversation with Jon Sundqvist about the necessity
of MLT++.

The analysis of the data would have been much more complex, without the good
starting point regarding the IDL routines provided by Kumail Zaidi.

The completion of the project always relied on working computers. A special

advantage were the new machines, that drastically increased the computational



Acknowledgements 156

performance of my model calculations. Thank you Keith Butler, Rudi Gabler, and
Tadziu Hoffmann for setting up the new machines, and for keeping the systems
running all the time, such that I could run all my simulations.

I would like to offer my special thanks to Bill Paxton and the MESA developers
for making MESA available. In addition, the open discussion on the mailing list
provided great help for many problems. This thanks has to be extended to all
mailing list users.

For the financial, as well as ideal and spiritual support I want to express
my sincere thanks to the Cusanuswerk e.V. for granting me their scholarship.
This allowed me to focus on my studies, but also to establish new contacts and
friendships.

[ am also grateful to Alex, Jo, Arno, and Anja Seegebrecht for proofreading my
thesis. Thank you for all the constructive feedback that helped to improve my
thesis.

Finally, I must express my profound gratitude to my parents Florian and
Martina and my sister Johanna. Thank you for all the encouragement and support

throughout my studies.



157 FEidesstattliche Erklarung

Eidesstattliche Erklarung

Hiermit erklére ich, die vorliegende Arbeit selbsténdig verfasst zu haben und keine
anderen als die in der Arbeit angegebenen Quellen und Hilfsmittel benutzt zu
haben.

Miinchen, den 2. November, 2020

Frederick Groth



	List of Figures
	Introduction
	Outline

	Physics of Massive Single Stars
	Stellar Structure Equations
	Convection
	Mixing Length Theory
	Semiconvection
	Thermohaline Mixing
	Overshooting
	MLT++

	Atmospheric Boundary Condition
	Rotation
	Changes of Structure Equations
	Rotationally Induced Mixing

	Magnetic Fields
	Stellar Winds
	Line Driven Mass Loss
	Dust Driven Mass Loss
	Mass Loss at Critical Rotation
	Dutch Wind Scheme


	Stellar Evolution and MESA
	Main Sequence
	Later Evolutionary Phases
	Hertzsprung Gap
	Helium Core Burning to Carbon Core Burning
	Luminous Blue Variable Stars
	Wolf-Rayet Stars

	Important MESA Parameters
	-Barrier
	Undershooting Problem
	Boundary Conditions

	Comparison with Other Calculations
	Comparison with Ekström et al. (2012)
	Comparison with Brott et al. (2011)
	Comparison between evolutionary tracks of Brott et al. (2011) and Ekström et al. (2011)

	Remnant Linking
	Explosion Types
	Remnant Types
	Woosley-Formalism
	Belczynski-Formalism
	Gravitational Mass


	Evolutionary Model Grids
	Physical Parameters
	Standard Grid
	Additional Grids
	Abundances

	Numerical Parameters
	Technical Aspects
	Runtime
	RAM Usage
	Final Storage


	Evolutionary Tracks and Core Masses
	Position of RSGs
	Systematic Effects
	Rotation and Magnetic Fields
	Convective Boundary Criterion

	Specific Effects
	Metallicity
	Overshooting
	Mass loss
	Mixing


	Remnant Analysis
	Remnant Masses
	Remnant Masses at MW Metallicity
	Comparison with Other Studies
	Remnant Masses at Lower Metallicities

	Remnant Types
	Explosion types
	Statistics for Microlensing
	Constraining the IMF
	Different Metallicities


	Conclusion and Outlook
	Massive Star Evolution with MESA – Set-Up and Technical Aspects
	EOS, Opacities, Nuclear Reaction Rates
	MESA setup
	Installation and first steps
	Starting our project
	Visualisation and Troubleshooting

	Settings for Our Calculations with MESA
	Structure of Inlists
	Setup and Execution

	Inlists
	Abundances
	inlist_common
	Phase-Specific
	Different Grids
	Adjustments for Avoiding Problems

	Mass Loss
	Hooks
	Implicit Mass Loss at Critical Rotation

	Runtime analysis

	IDL
	Analysis of a Single Model
	Grid Analysis

	Bibliography
	Acknowledgements
	Eidesstattliche Erklärung

